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Outline

Parkinson’s disease is a debilitating degenerative brain disorder that expresses
with motor symptoms, such as slow movement, tremor, rigidity, imbalance, and
a wide variety of non-motor complications like cognitive impairment, mental
health disorders, sleep disorders, pain and other sensory disturbances. Symp-
toms usually begin gradually and worsen over time. As the disease progresses,
the development of motor impairments such as dyskinesias (involuntary move-
ments) and dystonias (painful involuntary muscle contractions) result in speech
impairment, mobility limitations and consequently restrictions in many life ar-
eas. Many people with PD also develop dementia during the course of their
disease. The World Health Organization reports that globally, disability and
death due to PD are increasing faster than for any other neurological disorder.
While the most prominent symptoms of PD occur when nerve cells in the basal
ganglia (which produce dopamine) become impaired or die, there are also alter-
ations in the sympathetic nervous system which cause a change in the production
of noradrenaline and serotonine. This work is focused on studying some of the
circuits that emerge from the direct and monoamine-mediated interactions of
the brain areas in the basal ganglia and in the brain stem, and therefore the
effects of such circuits on the overall behaviour of the brain as a system of in-
teracting areas. Chapter 1 provides an overview of the brain: a brief description
of how neurons work, how their electrical behaviour can be modeled and which
are the most important complications and limitations of this approach, and mo-
tivates the following higher-level description of the brain as a composition of
functional areas and their interactions. Chapter 2 introduces a dynamical sys-
tem that models the interaction of the areas on which this work is focused, the
data which is used as a reference, and how the model is used to reproduce the
available data. In chapter 3 the descriptive and predictive performances of the
model are analyzed; the compatibility of the model’s predictions with literature
data is assessed, and finally the model is applied to predict the expected effects
of an hypothetical treatment.
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Chapter 1

Neurons, brain and Parkinson’s
disease: an overview

And here I am, finally standing on the shoulder of
giants, and of course I forgot my glasses.

Sam’s diary

1.1 The neuron

A neuron is a cell that specializes in the processing of electrical signals. Fig-
ure 1.1 shows the structure of a typical neuron: the cell body (or soma), which
contains the nucleus, extends several short dendrites in multiple directions where
it receives inputs from other neurons or cells through synapses [1]. Dendrites
are also branching out to form multiple connections; a single neuron can have
as many as 104 dendrite spines which extend to form as many as 105 synapses
[2], hence can receive and integrate signals from that many inputs at once.
Dendrites are usually a few micrometers long [3] (Figure A.4 summarizes typi-
cal dendrite dimensions).
The cell body also originates a tubular axon that carries signals to other neu-
rons. An axon can convey electrical signals to distances ranging from a few
micrometers to a few meters; the electrical signal, called action potential, is a
spike in the electrical potential around the axon due to a controlled exchange
of ions through the axon’s membrane [4] (shown in Figure 1.2). A single axon
in vertebrate cortex can connect to more than 104 post-synaptic neurons.
Aside the neurons lives other cells, called glial cells [1], which in fact outnum-
ber the neurons by a factor 2 to 10, differentiate in many kinds and cover
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Figure 1.1: A neuron [1].

important roles in support of the neurons: other than functioning as interface
between blood vessels and neurons for the delivery of nutrients (Figure 1.3),
they form lipidic insulating sheaths called myelin sheaths; this insulation layer
prevents the action potential spike from snowballing slowly down the axon via
ionic exchange but forces it to propagate as electric potential just inside the
axon and manifest only at the nodes (called saltatory propagation). Saltatory
propagation is much faster, raising signal propagation speeds from 0.5–10 m/s
for unmyelinated axons to up to 150 m/s [5]. The myelination of the axon also
serves as electrical insulation, limiting the interaction between the potentials of
axons which happen to be bundled together. Near its end the axon divides in
branches that form synapses with other dendrites or somas of other neurons.
The neuron is therefore a typically asymmetric (polarized) cell, structured in
a way such that electric potential spikes tend to flow from the dendrites and
cell body to the synapses at the end of the axons. Depending on their shape,
neurons can be classified as unipolar, bipolar or multipolar (Figure 1.4).
Most neurons, regardless of their type, have four distinct regions each of which
fulfill a specific function (Figure 1.5): the input region gathers signals; the inte-
grative region covers the crucial component of the neuron’s computation role by
deciding whether there will be an excitation state or not; the conductive region
carries the electrical output signal to the output region which in turn converts
the electrical signal in a chemical one for it to pass through the synapse.

1.1.1 Spikes and spike trains

Neuronal signals consist of short electrical pulses which can be measured by
placing an electrode on the soma or axon of a neuron. This pulses, usually
called action potentials or spikes, usually peak around 100 mV and last 1–2
ms. Figure 1.6 shows an example of a spike: if the combined post-synaptic
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Figure 1.2: Action potential flow for myelinated and unmyelinated
axons [1].

Figure 1.3: Glial cells [1].

stimulus entering a neuron surpasses its activation threshold, the neuron fires
a spike signal which travels through the axon. The spike is followed by a short
refractory period during which the resting voltage is lower (effectively raising
the neuron’s activation threshold) until the neuron’s ionic balance is restored
and the neuron is ready to fire again with the same input potential as before.
In fact, there is an absolute refractory period after a spike, during which it’s
impossible for the neuron to be excited again; this is followed by a relative re-
fractoriness period during which exitation is difficult but not impossible.
Isolated spikes of a single neuron look alike and may get attenuated and de-
formed during their travel through the axon. It is therefore not the shape of
the signal that carries the information, but the count and timing of spikes that
matter [6].
A burst of spikes emitted by a neuron, with a maximum frequency dictated by
its refractory period, is called a spike train. Specialized neurons have particular
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Figure 1.4: Unpolar, bipolar, multipolar neurons [1].

behaviors and emit different kind of spike trains; for example there are neurons
that spike regularly with a frequency dependent on its inputs and neurons that
spike regularly but emit high frequency burst when excited [7] (Figure 1.7).

1.1.2 The Synapse

The synapse is a structure that a neuron uses to communicate, electrically
or chemically, with other neurons or other target cells (for example, muscle
fibres). Electrical synapses are characterized by a pre- to post-synaptic cell
membrane distance of 4 nm and obtain cytoplasmic continuity via numerous
gap-junction channels that allow the action potential ionic current to flow from
the pre-synaptic neuron to the post-synaptic one. Electrical synapses can trans-
mit signals virtually without delay, and the transmission can be bidirectional.
Electrical synapses allow for rapid, synchronous firing of interconnected cells.
Chemical synapses instead maintain a greater junction distance of 20–40 nm.
There is no cytoplasmic continuity; pre-synaptic electric signals are converted
into chemical transmitters that are diffused in the synaptic cleft and captured
by specific receptor channel on the post-synaptic cell. This synapses have a
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Figure 1.5: Functional regions of neurons [1].

significant signal transmission delay of 0.3–5 ms or longer, and are unidirec-
tional. Chemical synapses have the important property of being able to amplify
signals: through a chemical synapse, a small pre-synaptic nerve terminal which
generates only a weak electrical current can depolarize a large post-synaptic cell.
Chemical synapses can be classified according to the neurotransmitter released:
glutamatergic (often excitatory), GABAergic (often inhibitory), cholinergic (e.g.
vertebrate neuromuscular junction), and adrenergic (releasing norepinephrine).
Because of the complexity of receptor signal transduction, chemical synapses
can have complex effects on the post-synaptic cell [1, ch. 8], [9]. Both electrical
and chemical synapses co-exist in the adult brain, although their ratio changes
with age and regions of the brain [10].

1.1.3 Integrate and fire model

The basic behaviour of a neuron can be approximated using an integrate and fire
model. This model is extremely simplified and neglects many aspects of neuronal
dynamic, but can nonetheless be useful for understanding the underlying basing
principles.[6].
Let the post-synaptic potential of neuron i at the time t be ui(t). At rest, we
have ui(t) = urest. Let also εij(t) be the the post-synaptic potential effect on
neuron i of neuron j firing at t = 0. A typical spike can be modeled as an
exponential rise and decay (Figure 1.8):

ε(t) = V (e−λfallt − e−λriset), t ≥ 0, (1.1.1)
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Figure 1.6: Example of neuronal membrane voltage spike [8].

where V scales the peak value and the time constants λrise, λfall define the
shape of the spike. We could therefore model the effects of neurons j firing at
times tfj on the post-synaptic potential of neuron i as the sum (Figure 1.9):

ui(t) =
∑
j

∑
f

wijεij(t− tfj ) + urest, (1.1.2)

where j iterates over the afferent neurons, f over the firing episodes of neuron
j, and wij represents the strength of the synapse, hence scales the effect that
neuron j has on neuron i.

However, this linear integration behaviour breaks down as soon as the membrane
potential reaches a threshold value ϑi: as Figure 1.6 shows, once the threshold
is passed, the neuron exhibits a spike-like excursion followed by an overcompen-
sation that brings the potential lower than the neuron’s typical resting potential
urest.
The post-synaptic spike potential (PSP) wijεij(t) can be positive (excitatory)
or negative (inhibitory); typically PSPs have amplitudes of about 1 mV, thus
in reality about 20–50 spikes have to arrive to a neuron in a short time window
for it to be excited.

Before discussing the non-linear firing behaviour, it is worth noticing that in
first approximation equation (1.1.2), being a summation process, implies that
the shape of the input spikes does not carry important information; a neuron is
triggered when its input potential reaches its threshold ϑi from below, regard-
less of the input signal shape. Therefore, in the context of modelling neural
networks, where the focus is on the response of the network rather than on the
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Figure 1.7: Some known types of spike patterns [7].

exact signals being carried around, it is useful to approximate the response of
a neuron with a function that models its general behaviour, even if some nu-
ances of its output signal are not entirely reproduced. The leaky current-base
integrate and fire model is an example of such simplification.

Leaky current-based integrate and fire model Instead of taking into
account the shape of the spikes, we can address only the effects induced in the
receiving neuron due to changes in their frequency and amplitude. We can thus
model a synapse as a time-dependent, potential-independent electrical current
flow to the receiving neuron; the input of the receiving neuron i would then be:

Ii(t) =
∑
j

Ipsj (t), (1.1.3)

where Ipsj (t) indicates the post-synaptic current neuron i is receiving from neu-
ron j at time t.
Since the neuron is a cell enclosed by a dielectric membrane, we can model a
neuron at rest as a capacitor which holds a charge Qi(t) (and has capacitance
C). We also know that the cellular membrane is not an ideal dielectric, hence
there is a leakage current that we can model with a resistor of value R in par-
allel with the capacitor. Finally, the neuron has a well-defined resting potential
which can be modeled by adding a battery in series with the resistor to obtain
the model circuit shown in Figure 1.10. We can therefore express the input
current with the equation:

Ii(t) = IR(t) + IC(t) =
ui(t)− urest

R
+

dQ(t)

dt
=

ui(t)− urest

R
+ C

dui(t)

dt
.

(1.1.4)
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Figure 1.8: Exponential spike signal approximation example, y =
500(e−3t − e−5t).

Multiplying both sides of the equation by R we obtain:

RIi(t) = ui(t)−urest+RC
dui(t)

dt
−→ τi

dui(t)

dt
= −(ui(t)−urest)+RIi(t),

(1.1.5)
where τi = RC is called the membrane time constant of the neuron.
When the neuron does not receive inputs (Ii(t) = 0, t > 0), (1.1.5) is a linear
differential equation of the first order. In particular we have:

u′
i(t) +

1

τi
ui(t) =

1

τi
urest, (1.1.6)

which can be solved by multiplying both sides by the integrating factor e
1
τi
t:

e
1
τi
t
u′
i(t) +

1

τi
e

1
τi
t
ui(t) = e

1
τi
t 1

τi
urest −→ d

dt
e

1
τi
t
ui(t) = e

1
τi
t 1

τi
urest,

(1.1.7)

whose solution can be obtained integrating both sides:

e
1
τi
t
ui(t) =

∫
e

1
τi
t 1

τi
urest dt = τie

1
τi
t 1

τi
urest + c (1.1.8)

ui(t) = urest + ce
− 1

τi
t
. (1.1.9)

We can now impose an initial condition u(0) = u0 and obtain the final solution:

ui(t) = urest + (u0 − urest) e
− 1

τi
t
, (1.1.10)
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Figure 1.9: Example of application of equation (1.1.2) [p.16]: two
input neurons (top and middle) spike randomly to contribute to the
input potential of a neuron with a resting potential of −70 mV
(bottom graph).

from which is evident that the solution has initial value ui(0) = u0 and tends
to urest when t→∞, as we expected.
Similarly, assuming the neuron is excited with a constant current Ii(t) = I0, t >
0, and was initially at rest (u0 = urest), using the same technique we obtain
the solution:

ui(t) = urest +RI0 −RI0e
− 1

τi
t
, (1.1.11)

hence, were the input current to stay constant and the neuron not to fire, the
membrane potential would asymptotically rise to urest +RI0.

When the neuron’s input current is not a constant but a time-dependent func-
tion Ii(t), equation (1.1.5) [p.18] is a linear first-order differential equation:

dui(t)

dt
+

1

τi
ui(t) =

urest +RIi(t)

τi
. (1.1.12)

Multiplying both sides by the integrating factor e
∫

1
τi
dt we obtain:

d

dt
e
∫

1
τi
dt
ui(t) =

urest +RIi(t)

τi
e
∫

1
τi
dt
, (1.1.13)
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Figure 1.10: Input-current behavioural approximation of a neuron
[6].

and therefore, integrating both sides:

ui(t) = e
−

∫
1
τi
dt
∫

1

τi
ureste

∫
1
τi
dt
+

R

τi
Ii(t)e

∫
t
τi
dt
dt (1.1.14)

= urest + e
−

∫
1
τi
dt R

τi

∫
Ii(t)e

∫
1
τi
dt
dt. (1.1.15)

This formulation of ui(t) does not yet account for the ability of the neuron to
fire. As described in Figure 1.6, a spike is initiated when the threshold potential
is reached; the potential quickly rises and descends to a value lower than the
rest threshold, where it slowly recovers from the refractory period before the
neuron’s sensitivity is completely restored. This more accurate spike shape can
be modeled with a damped oscillation which is set to happen at the firing time
tf :

s(tf , t) =


ae−b(t−tf ) sin(b(t− tf )) t ≥ tf

0 otherwise,
(1.1.16)

where parameter a scales the amplitude and b modulates the frequency response.
Figure 1.11 shows an example of this function.
Assuming the firing times Tf of neuron i are known, equation (1.1.14) can be
completed:

ui(t) = urest + e
−

∫
1
τi
dt R

τi

∫
Ii(t)e

∫
1
τi
dt
dt +

∑
tf∈Tf

s(tf , t). (1.1.17)

Figure 1.12 shows an example of the application of (1.1.17), obtained by
numerically integrating its derivative (1.1.12) [p.19], to which we now must
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Figure 1.11: Example of damped oscillation: the orange dashed line
shows the damped oscillation modeled by equation (1.1.16) [p.20]
with a spike happening at tf = 1. The blue solid line shows how
adding the damped oscillation term (equation (1.1.17) [p.20]) af-
fects the leaky neuron response; in this example it is the solution
of: dui(t)

dt
= − 1

τi
ui(t) +

ds(tf ,t)

dt

also add the corresponding derivatives of the spiking terms:

dui(t)

dt
= − 1

τi
ui(t) +

urest +RIi(t)

τi
+

∑
tf∈Tf

ds(tf , t)

dt
, (1.1.18)

where

ds(tf , t)

dt
=


abe−b(t−tf )(cos(b(t− tf ))− sin(b(t− tf ))) t ≥ tf

0 otherwise,

(1.1.19)

More refined formulations of the above definitions of neuron’s potentials be-
haviour, using both this linear differential equation approach and alternatively
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linear filters, are described in detail in [6]. It should however be clear by now,
as it is also indicated in the literature, that this approach presents several lim-
itations: first and foremost, it is a highly simplified model that neglects many
aspects of the behaviour of neurons and the underling physical and chemical
phenomena. For example, the pre-synaptic input currents are most certainly not
integrated linearly but the integration depends on the state of the post-synaptic
neurons; furthermore, this model has no memory of previous spikes while it
has been proven that spiking frequency and neuron sensitivity are related, and
activation thresholds can change in time with a phenomenon called adaptation.
Additionally, this particular analytical formulation requires external knowledge
on the firing times, which should instead be determined solely by the neuron’s
potential.
However, this kind of leaky integrate and fire models, when completed by taking
into account adaptation, bursting and inhibitory rebound, have been shown to
be able to reliably predict spike times and firing patterns [6], and can be used
to simulate large populations of connected neurons; they are therefore useful
to understand the working principles of large neural networks, which, despite
neglecting many aspects, is still an important step towards understanding how
the whole brain really works.
This low-level approach to neuron simulation can be extended to also include
chemical and physical phenomena and hence model all known aspects of a neu-
ron’s and a neural network’s behaviour; for example the Blue Brain Project [11]
successfully modeled a part of the neocortical tissue [12] using a supercomputer.
However, exactly because of its complexity and associated computational costs,
this kind of models may not be yet employable on a larger scale.
A complementary approach (which is the one employed in this work) is to model
higher level phenomena (for example, the average activation frequency across
many neurons of a particular brain region) instead; this latter approach may
not ultimately yield results as accurate as a full simulation, but is nonetheless
useful to understand and predict how complex systems behave.
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Figure 1.12: Example of neuron spikes happening at t1 = 3.5 and
t2 = 9.5. The black dotted line represent an hypothetical square
wave neuron input current I(t). The first cycle of the current is not
strong enough to drive the neuron’s potential (solid blue line) past
its activation threshold; when the input ceases, the leaky neuron
discharges according to its time constant. The second cycle is strong
enough to trigger a spike. The third and fourth current input cycles
happen during the refractory period after the spike, and despite
being identical to the second one in magnitude, they are not strong
enough to trigger the neuron again. At last, the fifth cycle comes
after the refractory period and the neuron is triggered once again.
The orange dashed line shows what the behaviour of the potential
would be if the neuron would spike naturally without any input
current contribution.

23



1.2 Morphological regions

Without any presumption of being exhaustive, this section provides an overview
of the most relevant structures that compose the brain. More detailed descrip-
tions can be found in [1; 16; 17; 18].

There are several main parts that can be identified as composing the Central
Nervous System (CNS) from the structural point of view:

The Cerebrum (Figure 1.13 A.7 and B) comprises of two hemispheres, each
consisting of a wrinkled outer layer (cerebral cortex) in turn divided into four
lobes and three internal structures: the basal ganglia, the hippocampus and
the amygdala (Figure 1.17). Physically, the cerebrum comprises of grey matter,
which consists mainly of neuronal cell bodies and glial cells, and white matter,
which consist mainly of myelinated axons.

The Diencephalon comprises of four main structures: the thalamus, which pro-
cesses most of the information reaching the cerebral cortex from the rest of
the central nervous system, the hypothalamus, which regulates autonomic, en-
docrine, and visceral functions. the epithalamus, which participates in the reg-
ulation of the body’s circadian rhythm, and the subthalamus which is involved
in somatic motor functions (Figure 1.15, Figure 1.17). The diencephalon is
attached to the optic nerve, an afferent sensory nerve responsible for vision and
sight which runs from the eye through the optic canal in the skull.

The Cerebellum is a structure attached to the bottom of the brain. Like the
cerebrum it has a cortical surface, but is structured as finely spaced parallel
grooves instead of broad irregular convolutions; in fact, the cerebellar cortex
is a tightly folded but continuous layer of tissue somewhat reminiscent of an
accordion’s bellow. This layer consists of several types of neurons regularly
arranged. Almost all of the output from the cerebellar cortex passes through a
set of small clusters of neurons called deep nuclei (Figure 1.16).

The Midbrain is the forward-most portion of the brain stem, effectively located
in the middle of the brain. It is composed of multiple structures, most notably
the cerebral aqueduct which is part of the ventricular system that circulates the
cerebrospinal fluid (Figure 1.14).

The Pons is in the brain stem, between the midbrain and the medulla oblongata,
and in front of the cerebellum. It includes direct neural pathways and tracts
(bundles of axons) which connect the brain to the cerebellum and medulla, as
well as tracts carry sensory information up to the thalamus (Figure 1.14). The
Medulla oblongata is a long stem-like structure that follows the pons in the
path from the cerebrum to the spinal cord which in turn connects the central
nervous system (CNS) to the body (Figure 1.15).
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Figure 1.13: Brain structure: Lateral view and cortical lobes [1]

The Medulla oblongata is also part of the brain stem, and is responsible for
autonomic functions, such as vomiting, sneezing, breathing, regulation of the
heart rate and blood pressure (Figure 1.14).

Finally, the Spinal cord is a long structure composed of nervous tissue that
connects the motor cortex to the body: receives and processes sensory informa-
tion from the skin, joints, and muscles of the limbs and trunk and controls the
contractions of muscles, and therefore the movement, of limbs and trunk. It
also contains reflex arcs, which are neuronal pathways that can independently
control reflexes without the explicit intervention of the motor cortex.
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Figure 1.14: Brain structure: overview [13]

Figure 1.15: Brain structure: midbrain median section [1]
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Figure 1.16: The cerebellum [14]

Figure 1.17: Brain structure: frontal section [15]
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1.3 Functional regions

Areas of the brain can also be distinguished by the function they perform.
Most functional regions and morphological structures coincide, although mor-
phological structures that perform multiple (even opposing) functions do exist.
Figure 1.18 illustrates some of the functions performed by the cerebral cortex,
while also providing an example of morphological regions which perform multi-
ple functions.
The exhaustive enunciation and description of all the functional areas is also
an open research subject and is out of the scope of this work; detailed infor-
mation about the current understanding of functional regions can be found in
[1; 16; 17; 18]. Some of the functional areas located in the basal ganglia and
the brain stem are of central importance for this work and we therefore provide
a brief introduction to their functions.

The basal ganglia (Figure 1.13) are a group of subcortical nuclei located cen-
trally in the brain. This nuclei are functionally distinct, and some of them are
part of the neurotransmitter signal loops which are involved in the onset of
Parkinson’s disease and are the focus of this study. In particular:

The striatum (Str) is a critical component of the motor and reward systems.
It coordinates multiple aspects of cognition, motor and action planning, moti-
vation, reinforcement, reward and decision-making. The striatum is composed
of neurons of two characteristic types: D1 and D2 which are both dopamine
receptors but perform respectively excitatory and inhibitory functions. Because
of the distinct behaviour and functions of the two neuron types, in this work
we consider the striatum as two distinct areas, StrD1 and StrD2.

The globus pallidus (GP), located approximately at the center of the basal
ganglia, is involved in the regulation of voluntary movement. When the globus
pallidus is damaged or disregulated, it can cause movement disorders as it fails
to exert its inhibitory action that normally balances the excitatory action of the
cerebellum. The striatum has projections to the globus pallidus which exhibit
inhibitory effects.

The substantia nigra is another basal ganglia structure located in the midbrain.
Anatomical studies have found that the substantia nigra is in fact composed of
two parts with very different connections and functions: the substantia nigra
pars reticulata and the substantia nigra pars compacta (SNc). The latter serves
mainly as a dopaminergic projection to basal ganglia structures. Parkinson’s
disease is characterized by the loss of dopaminergic neurons in the substantia
nigra pars compacta.

The dorsal raphe nucleus (DRN) is located in the brain stem, and is the largest
serotonergic nucleus to provide innervation to many other areas, including the
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Figure 1.18: Brain Functional overview [19])

basal ganglia and the locus coeruleus.

The locus coeruleus (LC) is a nucleus located in the pons, and is involved with
physiological responses to stress and panic. It is the area most involved in
the production of noradrenaline, which is projected to many areas of the brain
including the basal ganglia and the dorsal raphe nucleus.
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Figure 1.19: Dopamine pathways overview. [20]

Figure 1.20: Serotonine pathways overview. [21]

Figure 1.21: Noradrenaline pathways overview. [22]
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1.4 Parkinson’s disease

Parkinson’s disease is a degenerative disorder of the central nervous system.
While the most important symptoms involve the motor system with tremors,
rigidity and slowness of movement, there are also cognitive and behavioural
problems that develop with the progression of the disease like depression, anx-
iety, apathy and ultimately dementia. Another clinical aspect of the disease
is a loss of automaticity of movement with a consequent increased need for
voluntary control, which manifests as a growing difficulty in carrying out si-
multaneous movements. The disruption of well-learned movements is believed
to reflect a dysfunction of the basal ganglia’s role in procedural learning. The
disease typically occurs in people over the age of 60, with a total incidence of
about 1–2% slightly skewed towards the male population, which account for
6 cases every 10. PD’s diagnosis is mainly based on symptoms; neuroimaging
can be used to rule out other diseases. The salient feature of the disease is the
degeneration of dopaminergic cells in the substantia nigra pars compacta that
project dopamine to the striatum and other ganglia nuclei; this loss in dopamine
is considered to be the cause of most of the movement abnormalities, since they
respond to dopamine replacement therapy. Nonmotor symptoms (depression,
anxiety etc.) instead do not respond to dopamine replacement therapy very
well and must therefore be caused by other imbalances in the usual brain cir-
cuits equilibrium. According to recent studies these features may be caused by
pathological changes affecting some lower brain stem nuclei such as the locus
coeruleus and the dorsal raphe. Direct evidence for the reduction of dopamin-
ergic inputs to the striatum comes from postmortem chemical analyses and
from PET studies in humans, which demonstrate that the dopamine reduction
is most severe in the caudal putamen, a portion of the striatum involved with
the motor circuitry. Post-mortem studies have also assessed that motor signs
of the disease occur when more than 70% of the striatal dopamine is lost,
hence also demonstrating a significant capacity of the basal ganglia network
to compensate for changes in dopamine levels. No cure for PD’s is currently
known, but there are medications, surgeries and physical treatments that may
provide relief and improve a person’s quality of life. Levodopa is a precursor of
dopamine that can successfully increase dopamine production in the brain and
consequently diminish motor symptoms. It is however not free from important
side effects and long-term complications which may render the medication in-
effective while leaving the patient dependent, where withdraw can also develop
life-threatening side effects. Dopamine agonists are a family of drugs that can
bind to dopamine receptors in the brain and have similar effects to levodopa,
although they are usually less effective. They are usually preferred in the treat-
ment of younger-onset of PD as they can provide a period of efficacy with
milder side effects compared to levodopa, and may allow a better quality of life
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before the treatment with levodopa becomes necessary. Surgery has also proved
to be effective, in both deep brain stimulation and lesional form. Deep brain
stimulation consists in the installation of electrodes in relevant brain areas to
provide a controlled electrical stimulation, and is mainly used in subjects which
do not respond to medications. Lesional surgery, which consist in the deliber-
ate formation of lesions to suppress the overactivity of some areas, unlike deep
brain stimulation, is not reversible and is therefore left as a last resort. As for
the previous sections, this summary is just a very brief overview. More detailed
descriptions can be found in [1; 23; 24; 25; 20] and many of the works cited in
the bibliography.

1.5 Modelling based neurological research

The brain, especially the human one, is a really complex system with over
120 · 109 neurons which are estimated to form upwards of 1015 synapses. More-
over, neurons and synapses come both in hundreds of different kinds, and inter-
act with a plethora of other cells in the brain, which contribution to the brain’s
activity and pathologies is not yet completely understood. The interactions be-
tween neurons can be of electrical, chemical, and electro-chemical nature; some
aspects of this interactions can be monitored in live subjects, sometimes with
greatly invasive procedures, usually with limited spacial and temporal resolution.
Some other aspects (like fore example local or diffuse chemical concentrations)
can only be analyzed post-mortem if at all, sometimes with limited precision
and time-sensitivity due to the natural decay of the chemicals themselves. The
challenge of acquiring an as-complete-as-possible picture of the state of the
brain of a patient is a greatly important active field of research. Until that
challenge is overcome, however, neurological research will have to deal with
incomplete, imprecise and sometimes erroneous information; nevertheless the
understanding of the brain, how it works, how pathologies develop and if and
how they can be cured is an important endeavour for both mankind and for
the unfortunate individuals who happens to develop such problems and deserve
hope in a cure. In this context, modelling-based research is one of the most
successful approaches in guiding progress in the field.
Building models is an approach that has several advantages. The most im-
portant is simplification: a model is by definition a simplified representation
of a system. Nonetheless, a simple model that is able to correctly predict the
phenomenon it represents within useful precision and is at the same time com-
prehensible has a great value, since it can unveil what are the most relevant
and basic phenomena at play and what features are instead not as relevant.
An understandable model can be a great base to develop more comprehensive
theories about the system under study. A great example are Newton’s laws
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of motion: they are in fact a simplified model, since they don’t take into ac-
count relativistic effects as instead relativistic mechanics models do. However,
Newton’s laws of motion are much easier to understand, and usefully predict
with great precision the behaviour of moving bodies if relativistic speeds are not
involved. It is therefore important to know what are the limits of applicability
of the model.
A model can also provide isolation by deliberately ignoring some aspects of a
phenomenon, and focus only on a particular aspect of a system. Such a model
can still be useful to prove (or disprove) the relevance of the ignored aspects,
and can still help in understanding many aspects of nature.
Many models can be made to compete for the representation of a phenomenon;
in fact, this statement could almost be taken as the definition of the scientific
method. It is nonetheless a very important aspect: a simple model may provide
an understanding of the basic principles that regulate a system, while a comple-
mentary complex model, although maybe not really humanly comprehensible,
could instead provide very accurate predictions without contradicting the sim-
pler one.
Since the human brain cannot yet be measured without interfering for the most
part, and we don’t have control over many aspects of it for obvious ethical
reasons, in the field of neurological research exploratory modeling is especially
important. Numerical models can provide great insights on many aspects of
the brain’s functions. Low level models, like the previously mentioned blue
brain project [11] can be used to understand the role of eletrical and chemical
interactions between neurons and emergent behaviour of big biological neural
networks; high level models like the one presented in this study can acquire
insights on how entire brain areas interact and affect each other at the systemic
level. Since common treatments such as drugs and electrical stimulation do
in fact have measurable effects at the systemic levels, such high level models
can be also useful in understanding the expected effects of such treatments.
Numerical models do however need to be validated against real data. Model
validation unfortunately require a degree of control over some aspects of the
system being measured; for example, to model how dopamine levels change in
the brain of parkinsonian subjects, it is necessary to measure both a healthy con-
trol group and a parkinsonian group. For this reason it also common practice to
use biological models: some animals, for example rats, do exhibit an outstand-
ing similarity with humans in many clinical aspects, including the brain. This
animals, being complex biological systems, can be seen as a way more complete
and complex model, over which it is possible to exert some control. For exam-
ple, it is possible to breed specific strains of mice that naturally develop early
onset parskinsonism, or to physically/chemically induce pathologies in a subset
of the population, compare them with healthy subjects, and use the collected
data to validate numerical models. Animal models do of course present great
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ethical challenges as humans do, and should be used as sparingly as possible.
For this reason, numerical models acquire even more importance: for example,
many concurrent models can be developed for the same pathology to test as
many theories as possible. The models themselves will define the data that is
necessary to validate or dispute the model. An animal model population can
then be used to measure all the necessary aspects at once, instead of having to
use an entire animal model population to test each theory independently.
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Figure 1.22: Comparison of rat and human brain [16]. Rats are
often used as animal models to test theories about the human brain
since they exhibit many biological resemblances to humans and are
easy to breed.
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Chapter 2

Model of brain areas
interactions

Science is what we understand well enough to
explain to a computer; art is everything else.

Donald E. Knuth

2.1 Background

Common theoretical and empirical approaches to studying Parkinson’s Disease
(PD) mainly focus on dysfunctions in dopamine-producing cells (DA) in the
substantia nigra pars compacta (SNc). The substantia nigra in turn projects
to the striatum (composed of two distinct parts, StrD1 and StrD2 [26]), which
is the principal input gate of the basal ganglia, the subcortical nuclei which is
critical to managing motor behaviour [27; 28].
A consistent reduction of striatal dopamine levels causes malfunctioning of the
basal ganglia circuits that, in turn, may contribute to the emergence of different
PD symptoms [29; 30; 31]. The main motor symptoms include: resting tremor,
bradykinesia, rigidity, and freezing of gait [32; 33; 34]. Cognitive impairments
might be evident at the time of diagnosis, even though they significantly man-
ifest in the later stage of the disease progression [35; 36].
However, several recent studies suggest that psychiatric disorders, such as
depression or anxiety, often develop several years before typical motor symp-
toms [37; 38]; in particular motivational system dysfunctions manifest early on
[39; 40; 41].
Based on the evidence supporting dopaminergic malfunctioning, drug therapies
for PD often aim at recovering dopamine levels [32]. While these approaches
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seem to produce amelioration for most motor dysfunctions, they generate vari-
able responsiveness for others (e.g., resting tremor [42; 43; 25]). In addition,
long-term use of dopamine therapy may cause adverse effects like dystonic move-
ments and impulse control disorders. The lack of consistency in dopamine-based
therapies could be explained by considering that dysfunctional mechanisms lead-
ing to PD involve a network of areas and circuits interacting dynamically and
influencing each other, rather than specific regions and molecular mechanisms
working in isolation [29; 44; 45; 46; 33; 47]. In this respect, literature suggest
that aside from the dopaminergic system, PD could also involve dysfunctions
of noradrenergic and serotonergic neuronal populations [48; 49; 50; 51].
In PD, impairments of locus coeruleus (LC), the dorsal pontine nucleus that
synthesizes noradrenaline (NE), begins before nigral pathology and appears to
be more severe [52; 53; 54; 55]. Similarly, the dorsal raphe nucleus (DRN),
which is critical for serotonine (5-HT) release, could show impairments earlier
than the dopaminergic system and is involved with the development of both
non-motor and motor symptoms [45; 56; 57; 58; 59; 60].
Starting from this system-level perspective, this work proposes a bio-constrained
computational model that, for the first time, explicitly investigates the neural
mechanisms underlying interactions between dopamine, noradrenaline, and sero-
tonine in PD. The model is able to reproduce real data showing the effects of
noradrenaline and serotonine depletions in 6OHDA-induced parkinsonian ani-
mal models [53], suggesting possible causal dynamical interactions between the
basal ganglia regions and the areas involved in the neuromodulators release. In
addition, the model gives some predictions on how the activity in other brain
areas not investigated in the target experiments of [53] could change, and also
on possible alternative treatments acting on LC and DRN activity. A stability
analysis that confirms the soundness of the model is also performed and in fact
used directly during the parameters search phase to filter out candidates which
lack the desired stability properties. This point could be critical to validate the
effectiveness of the model [61; 62].
The understanding of PD as a multifactorial disease which affects the noradren-
ergic and serotonergic systems beyond the dopaminergic one could support the
development of more effective drugs, possibly with fewer side effects. More-
over, the understanding of the system’s dynamical behaviour could allow the
development of new tools for early diagnosis based on the interaction of the
different monoaminergic systems [50; 52; 45].

2.2 Scope and methodology

This work proposes a simplified model of the interaction of brain areas which
are involved in the onset of Parkinson’s disease. In particular, the focus is on
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the circuits given rise to by neuromodulators interactions, namely serotonine,
dopamine and noradrenaline. The aim is to identify a model that explains a
broad range of observed interactions within this system and can potentially
hint at which are the most important effects at play. This interactions are
not yet completely understood at the systemic level and there is only limited
experimental data available.

The work is organized in the following steps:

1. Data aggregation: available experimental data on Sprague-Dawley rats
is aggregated from multiple articles. The data about brain areas activa-
tion and neuromodulator concentration had to be carefully chosen to be
meaningful in the context of this meta-study. In particular, it is important
to select only measurements which have been performed with similar and
compatible measurement methods and techniques: electrical and chemi-
cal measurements of brain areas are extremely sensitive to hard-to-control
variables. For example, electrodes placement in-vivo can only be roughly
estimated during the procedure and have to be assessed post-mortem,
with relatively low spatial precision; chemical concentrations can often-
times also only be measured post-mortem and are sensitive to the timing
and extraction techniques.

Values from different studies, despite being obtained consistently in each
case, are likely to be measured using different techniques and are there-
fore hard (if not impossible) to compare in terms of absolute values.
Relative change trends have instead been shown to be more consistently
reproducible across studies, and are therefore more informative in this
meta-study context.

2. Data generation: aggregated data about the activation frequency of
brain areas in different states (healthy, affected by induced parkinson or
other monoaminergic imbalances) is condensed as random variables with
an associated distribution, which will be used later on to generate syn-
thetic data compatible with experimental studies. In particular, a syn-
thetic population of virtual mice is generated according to the identified
distributions; each virtual mice therefore identifies an instance of the con-
straints that a model must be able to reproduce.

3. Model hypothesis: A model architecture hypothesis is formulated ac-
cording to the structures and interactions suggested by available data
and literature; model parameters that happen to represent measurable
quantities that are present in the data are set to values derived from lit-
erature instead of being left free for optimization. Fitness measures and
evaluation criterions suitable for the model hypothesis are defined.
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4. Model validation: The free parameters of the model are optimized for
each individual of the synthetic population, resulting in a population of
models which reproduce the synthetic data with the desired accuracy. If
instead the model would not able to reproduce the data (hence it would
not be possible to optimize the model’s parameters), the architecture is
evidently wrong and the model must be reformulated.

5. Direct predictions: The population of models is used to extract predic-
tions of known and unknown variables. If the predictions on the behaviour
of known variables are in accordance with experimental data, the model
is considered valid; predictions of yet unknown variables can be extracted
and subject to experimental verification in future studies.

6. Indirect predictions The validated model can now be used to make
predictions on the effects of changing some parameters of interest (for
example, to predict the effects of an hypothetical treatment which stim-
ulates one of the brain areas.)

Steps 3 and 4 effectively define a model exploration cycle. Various model hy-
pothesis have been explored; the journey of this work started with a linear model
which included only the most important connections identified in literature, and
was enriched in successive steps by adding missing connections and introducing
non-linear effects as suggested by the literature until we identified the simplest
model that could:

• agree with the available literature in terms of connections and effects
between the areas

• be able to reproduce the data with the desired accuracy.

This work only presents the details of the last iteration of the model which is
indeed able to reproduce the phenomena under study.

2.3 Available data

This section summarizes the data that have been collected across a large number
of published and peer-reviewed articles. The articles, and therefore the data,
have been carefully selected for consistency: whenever possible, measurements
done with similar or comparable procedures were preferred to data obtained by
different means. The chosen data-source articles all referred to measurements
of mice of the same specie, sex and other relevant characteristics. The data
presented in the following tables is used to impose constraints, parameters and
expected values in healthy and lesioned subjects. In the available literature, the
data is usually reported in the form of an average value, always accompanied
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by a confidence interval and sometimes by distribution characteristics. Since
data about single subjects is oftentimes not directly available (and when it is
available, it may not be complete), we have no choice but to define what average
values and distribution should look like, and generate synthetic individuals that
we can then reproduce and analyze.

2.3.1 Average brain area activation in healthy subjects

This data is obtained by measuring and averaging the activity on many neurons
from the same area; despite being independent, neurons of the same area tend to
exhibit similar average behaviours like firing patterns and rates. The averaged
firing frequency is therefore a useful indicator of the overall activity of that
particular cluster of neurons.

Area Value Details

GP 22.0Hz Globus pallidus (average, internal end external) [52; 63; 64]

StrD1 10.0Hz Striatum, Medium spiny neurons type D1 [65; 66]

StrD2 9.0Hz Striatum, Medium spiny neurons type D2 [65; 66]

SNc 4.47Hz Substantia nigra pars compacta [67]

DRN 1.41Hz Dorsal raphe nucleus [67]

LC 2.3Hz Locus coeruleus [68]

For this values, we assume a normal distribution around the average value, with
a normalized maximum excursion of ±50%.

2.3.2 Time constants in healthy subjects

The time constant is the time it takes for a neuron to go back to its baseline
activation frequency after a stimulation. Different kind of neurons, which are
usually clustered in brain areas, exhibit similar time constants. Since in this work
we are focusing on the asymptotic behaviour of the system, we can reduce the
complexity of the model by imposing that an entire brain area is characterized
by its time constant, which in turn we assume not to be altered by lesions or
other factors.
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Parameter Value Details

τDRN 3.3± 0.3 ms [69]

τSNc 1.5± 0.3 ms [70]

τLC 0.8± 0.3 ms [71]

τGP 18± 0.3 ms [72]

τStrD1 2± 0.3 ms [65; 66]

τStrD2 2± 0.3 ms [65; 66]

2.3.3 Reference data for areas interaction

In [52] a population of Adult male Sprague–Dawley rats are subdivided in six
groups using the following procedure:

1. Half of the rats are injected with 6OHDA, the other half with a saline
solution (control group, also called SHAM)

2. Three weeks later, half of each population is injected with either a saline
solution, pCPA or DSP4

There are therefore six populations:

All

SHAM

SHAM pCPA (5-HT) DSP4 (NE)

6ODHA (DA)

6ODHA pCPA DSP4

where:

• SHAM: the rats were injected a saline solution which is expected to have
no effect, hence this represents the control group
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• 6ODHA: this drug selectively targets dopaminergic neurons and induces
a parkinsonian state

• DSP4: this drug selectively lesions the noradrenerginc neurons of the
Locus Coeruleus

• pCPA: is a selective inhibitor of serotonin synthesis which induces a 50-
80% serotonin depletion effect, reversible 4 days after the injection

The experiment identified the following changes in the activity of the Globus
Pallidus:

Group Frequency Comment

SHAM 22Hz [52; 64]

SHAM + 6ODHA 22Hz = SHAM [64]

SHAM + DSP4 22Hz = SHAM [52]

SHAM + pCPA 15Hz (= 0.65 SHAM) [52]

6ODHA + DSP4 11–22Hz (0.5 SHAM <= x <= SHAM) [52]

6ODHA + pCPA 11–22Hz (0.5 SHAM <= x <= SHAM) [52]

The lesions also have effects on other areas:

Group Effect

SHAM+6OHDA SNc drops by at least 90% wrt SHAM [52]

LC drops by at least 20% wrt SHAM [68]

SHAM+DSP4 LC drops by at least 80% wrt SHAM [52]

SHAM+pCPA DRN drops by at least 70% wrt SHAM [52]

The synthetic data that is generated according to this table used to fit the
model instances is discussed in details in section 2.6.5.
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Figure 2.1: Conceptual model schema. The average activation fre-
quencies of six brain areas are modelled (rounded rectangles); some
interactions are modulated by monoamines (circles). Arrows rep-
resent positive (excitatory) effects while circles represent negative
(inhibitory) effects. Noradrenaline has a nonlinear (both excitatory
and inhibitory) effect on SNc which is indicated by a bar. Each area
has a corresponding stimulus (ovals) which represents self-activation
as well as any other stimulus the area might receive from the rest of
the brain, which is not explicitly modelled. Finally, hexagons indi-
cate which areas are affected by the administration of which drugs.
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2.4 The model

2.4.1 Assumptions and simplifications

Figure 2.1 summarizes the conceptual model. The average activation frequency
of six brain areas is represented by the corresponding rounded boxes: the locus
coeruleus (LC), the dorsal raphe nucleus (DRN), the substantia nigra pars com-
pacta (SNc), the striatum (StrD1, StrD2), and the the globus pallidus (GP).
The striatum is comprised of D1- and D2-type neurons which react differently
to dopamine and are therefore represented separately. In this model, brain areas
release a fixed amount of monoamines (noradrenaline (NE) from LC, serotonin
(5-HT) from DRN and dopamine (DA) from SNc) which is then projected in
different amounts to other areas, with excitatory (arrow), inhibitory (dot) or
non-linear (bar) effects. Each area has a characteristic rest activation frequency
which is due to internal and external (the rest of the unmodelled brain) fac-
tors; this factors are assumed to be constant and are modelled as an excitatory
stimulus from the oval blobs. Finally, the lesions are applied by means of ad-
ministering a drug which interferes with the normal functioning of the affected
brain area; in particular we assume that the sensitivity of the affected area, with
respect to all the modelled stimuli, changes when the lesion is applied. The
drugs are represented with hexagonal blocks.
The model is developed on the base of a few main assumptions: first of all,
we assume that a brain area produces an amount of monoamine that is directly
proportional to its average activation frequency. Moreover, we assume that the
produced monoamine is distributed to the targeted areas with constant ratios
which do not depend on the activation frequency. The weight of the connection
between a monoamine and its targeted area in Figure 2.1 therefore represents
at the same time the fraction of monoamine that is projected to the targeted
area and the area’s sensitivity to the molecule. Under the aforementioned as-
sumptions, it is not strictly necessary to represent the monoamine concentration
explicitly and the schema of Figure 2.1 can be simplified to the one of Figure 2.2
which remains conceptually equivalent: each area has an influence on other ar-
eas which is proportional to its activation frequency, to the strength of the
monoamine projection and the sensitivity of the receiver. External stimuli and
drugs are also hidden to avoid clutter and leave the focus on the modelled brain
circuit. We assume that every area responds linearly to the monoamine projec-
tion it receives. The sole exception is the substantia nigra pars compacta, for
which instead we assume a non-linear reaction to the noradrenaline projected
from the locus coeroleus which can either be inhibitory or excitatory in charac-
ter. Moreover, we do not model explicitly the specific mean of action of each
drug (and hence the different nature of each lesion), but we assume that the
drug alters the sensitivity of the affected area to all its afferent inputs.
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Figure 2.2: Simplified model schema: the same circuits defined
in Figure 2.1 can be represented as direct connections under the
assumption that the projected monoamine amount is directly pro-
portional to the average activation frequency of an area. External
stimuli and drugs are also not represented here for the sake of sim-
plicity.
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2.4.2 Dynamic model

The schema from Figure 2.2 can be represented using the following system of
equations:

ĠP = − 1

τGP

GP− αStrD1
GP StrD1− αStrD2

GP StrD2 + αDRN
GP DRN+ αext

GP

(2.4.1)

˙StrD1 = − 1

τStrD1

StrD1 + αSNc
StrD1SNc + αDRN

StrD1DRN+ αext
StrD1 (2.4.2)

˙StrD2 = − 1

τStrD2

StrD2− αSNc
StrD2SNc + αDRN

StrD2DRN+ αext
StrD2 (2.4.3)

˙SNc = − 1

τSNc

SNc− αDRN
SNc DRN− αLC

SNcLC + βLC
SNcLC

2 + αext
SNc (2.4.4)

˙DRN = − 1

τDRN

DRN− αSNc
DRNSNc + αLC

DRNLC + αext
DRN (2.4.5)

˙LC = − 1

τLC
LC + αSNc

LC SNc− αDRN
LC DRN+ αext

LC (2.4.6)

where the abbreviated notation ẋ stands for dx
dt

and:

• the time constants τx are all positive and refer to a dampening term which
brings back the activity of each area to its resting activation level in the
absence of external stimulation (see section sec:taus)

• the parameters α represent the linear components of the system, are all
positive and follow the notation: αfrom

to ;

• the parameters αext
x are synthetic terms that implicitly account for the

rest activation of each area and other external stimuli which are not part
of the modelled circuit.

• the parameter β is also positive and follows the same notation βfrom
to , but

account for non-linear effects.

2.4.3 Formalization

Let y be the status vector of the system of equations (2.4.1) – (2.4.6); we also
define s to be the size of y, hence the number of equations in the system. We
therefore have:
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y = (GP, StrD1, StrD2, SNc,DRN,LC)T ∈ Rs (2.4.7)

The system can be represented in the general form:

ẏ(t) = f(t,y(t)) (2.4.8)

where each component of the function f : (R × Rs) → Rs is defined by the
corresponding equation in (2.4.1) – (2.4.6) [p.47].
In particular, none of the equations depend on the independent variable t; the
system is therefore autonomous or time-independent:

ẏ(t) = f(y(t)) (2.4.9)

and we assume the initial state y(t0) = y0 to be known.

The linear case When the β parameter is zero, system (2.4.1) – (2.4.6) [p.47]
is linear and can therefore be represented in matrix form as:

ẏ(t) = Ay(t) + b, aij = αj
i , b =


αext
1

...

αext
s

 (2.4.10)

where, aij = 0 if the corresponding αj
i is not defined and likewise bi = 0 if αext

i

is not defined.

Specialization Considering system (2.4.1) – (2.4.6) [p.47], the non-linear
part can also be easily represented in matrix form. In particular we have:

ẏ(t) = Ay(t) + C(y(t) ◦ y(t)) + b (2.4.11)

were αij and bi are defined as in (2.4.10) and also cij = βj
i or cij = 0 where

again the corresponding βj
i coefficient is not defined; “◦” indicates the element-

wise vector product. We will, from now on, refer to the explicit notation from
(2.4.1) – (2.4.6) [p.47] or to this compact notation interchangeably, in effort
to keep the exposition as clear as possible and focused on the mathematical or
biological aspects as necessary.
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Equation (2.4.11) [p.48] therefore represents the system:

ẏ1 = −
1

τ1
y1 − a12y2 − a13y3 + a15y5 + b1 (2.4.12)

ẏ2 = −
1

τ2
y2 + a24y4 + a25y5 + b2 (2.4.13)

ẏ3 = −
1

τ3
y3 − a34y4 + a35y5 + b3 (2.4.14)

ẏ4 = −
1

τ4
y4 − a45y5 − a46y6 + c46y

2
6 + b4 (2.4.15)

ẏ5 = −a54y4 −
1

τ5
y5 + a56y6 + b5 (2.4.16)

ẏ6 = a64y4 − a65y5 −
1

τ6
y6 + b6 (2.4.17)

2.4.4 Modelling lesions

Each component of the status vector (2.4.7) [p.48] represent the average ac-
tivation frequency of the corresponding brain area, which in turn indirectly
represents respectively how much monoamine is produced and projected to the
affected areas.
As explained in [52], three kinds of monoamine depletion are chemically induced
by administering the corresponding drug in the brain region of interest:

Drug Effect Affected area

6ODHA Dopamine depletion SNc

pCPA Serotonine depletion DRN

DSP4 Noradrenaline depletion LC

With this model we assume a monoaminic depletion to be caused by the death
(or temporary incapacitation) of a fraction of an area’s neurons, which in turn
we assume to be directly reflected by a fall in the average activation frequency
of the area.

Each equation of the model is composed by three conceptual blocks:

• a damping term
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• a constant stimulus

• reaction to projections from other areas

The constant stimulus represents external and internal activation sources that
are not directly accounted for in this model. Together with the damping term,
the constant stimulus accounts for the resting behaviour of the area: the area
will stabilize to its rest activation frequency. In absence of reaction terms each
equation has an equilibrium point:

y′(t) = −1

τ
y(t) + k, y′(t) ≡ 0⇒ y(t) = kτ. (2.4.18)

The time constants τ are derived from literature (see values from section 2.3.2)
and we assume them to be typical values for the specific kind of neuron found
in an area; we therefore assume they are not altered by the lesion.

It is however reasonable to expect that the sensitivity of lesioned areas to internal
and external stimuli will change in such a way that the average activation
frequency changes to the levels which have been experimentally measured.

We can therefore define multiple versions of the same model, which differ from
the healthy model only for the constant and reaction coefficients of the lea-
sioned area.
For example, suppose a healthy subject Bob is modelled using model (2.4.11) [p.48]
by the coefficients held in A,C,b. Having received a dopaminergic lesion
(hence, SNc neurons have been affected by 6ODHA), sick Bob will now be
modelled by the same equations of model (2.4.11) [p.48] but this time with
coefficients A6OHDA, C6OHDA,b6OHDA, which differ by A,C,b only by the val-
ues corresponding to the parameters of the equation for SNc, namely αDRN

SNc ,
αLC
SNc, β

LC
SNc, α

ext
SNc.

Likewise, when Bob also receives a serotonergic lesion by being adminstered
pCPA, there will be a third set of Bob’s parameters A6OHDA+pCPA, C6OHDA+pCPA,
b6OHDA+pCPA which again differ from A6OHDA, C6OHDA,b6OHDA only by the
parameters corresponding to the equation for DRN, and so on.
A single subject is therefore represented by multiple versions of the parameters
matrices A,C,b, each set corresponding to one particular state: Healthy (also
called SHAM), 6ODHA, pCPA, DSP4 when only one of the lesions is applied,
6ODHA+pCPA, 6ODHA+DSP4 when lesions are combined, and so on.

2.4.5 Parameters dimensionality analysis

Each component of the status vector y directly represents the average activa-
tion frequency of a brain area, and is therefore expressed in Hz.
The derivative term in each equation of system (2.4.1) – (2.4.6) [p.47] are all
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GP

StrD1

StrD2

DRN

LC 6OHDA

EXT_SNc

Figure 2.3: Representation of how the modelled lesion affects the
system: the drug-induced lesion influences the behaviour of an area
(in this case SNc) by modifying its sensitivity to the stimuli it re-
ceives.
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derivatives with respect to time of a frequency, hence they are all expressed in
Hz/s (or 1/s2).
Consequently, the external stimulus parameters αext must also be expressed in
Hz/s, while the remaining α parameters must be 1/s, hence Hz.
The second order term parameters β are instead pure numbers, since Hz2=1/s2=Hz/s.
Finally, all time constants τ are naturally expressed in seconds.

2.4.6 Stability conditions

Let us consider a non-linear system ẏ = f(t,y), with initial conditions y(t0) =
y0 and which is assumed to admit an equilibrium point in ȳ = 0† The null
equilibrium point is stable if:

∀ϵ > 0 ∃δ = δ(ϵ, t0) such that ∥y0∥ < δ ⇒ ∥y(t)∥ < ϵ, ∀t ≥ t0 (2.4.19)

or in words, a neighborhood of the equilibrium point exists such that any initial
point from that neighbourhood remains arbitrarily close to the equilibrium point.
More stringently, we can ask for the neighborhood to be constant with respect
to time: if δ = δ(ϵ), the solution is uniformly stable.
If also limt→∞ y(t) = 0 holds, the solution is asymptotically stable.
An even more stringent requirement defines an exponentially asymptotically
stable solution:

∃α ≥ 1, β, δ > 0, such that ∥y0∥ ≤ δ ⇒ ∥y(t)∥ ≤ αδe−β(t−t0), ∀t ≥ t0.
(2.4.20)

System (2.4.11) [p.48]:

ẏ(t) = Ay(t) + C(y(t) ◦ y(t)) + b = f(t,y) (2.4.21)

can be translated to have an equilibrium point at the origin. Let ȳ be the
equilibrium point, such that:

0 = Aȳ + C(ȳ ◦ ȳ) + b = f(t, ȳ) (2.4.22)

We obtain:

(y + ȳ)′ = ẏ = A(y + ȳ) + C((y + ȳ) ◦ (y + ȳ)) + b (2.4.23)

= Ay + Aȳ + C(y ◦ y) + 2C(y ◦ ȳ) + C(ȳ ◦ ȳ) + b (2.4.24)

= Ay + C(y ◦ y) + 2C(y ◦ ȳ) (2.4.25)

†a point such that ẏ = f(t,0) = 0
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since (2.4.22) [p.52] holds. Now y = 0 is clearly an equilibrium point, since A
and C are linear combinations and an element-wise product by the zero vector
is zero.
Let Dȳ = diag(ȳ); we can now rewrite y ◦ ȳ as Dȳy. We therefore have:

ẏ = Ay + C(y ◦ y) + 2CDȳy = (A+ 2CDȳ)y + C(y ◦ y) (2.4.26)

which can be represented as a sum of a linear and a non-linear term by setting
Ã = (A+ 2CDȳ):

ẏ(t) = Ãy(t) + g(y(t)) (2.4.27)

since matrices A,C,Dȳ are constants with respect to time in (2.4.26).

It is now possible to check the applicability of Perron’s theorem ([73, p.132]),
which states that given a system in the form ẏ(t) = Ay(t) + g(t,y(t)), if
σ(A) ⊂ C− and:

lim
∥y∥→0

∥g(t,y)∥
∥y∥

= 0 (2.4.28)

uniformly with respect to t, then y = 0 is exponentially asymptotically stable.

Since:
∥g(y)∥ = ∥C(y ◦ y)∥ (2.4.29)

condition (2.4.28) is clearly satisfied. Hence, if also σ(Ã) ⊂ C− holds, the
system is exponentially asymptotically stable.

Assuming A,C and b to be known for a particular instance of system (2.4.11) [p.48],
it is therefore necessary to compute an approximation of the equilibrium point
ȳ and consequently Ã:

Ã = A+ 2CDȳ, Dȳ = diag(ȳ) (2.4.30)

before the stability condition can be verified.
In the particular case of system (2.4.1) – (2.4.6) [p.47], C has only one non-zero
element, and therefore:

2CDȳ = 2(c46e4)(ȳ6e
T
6 ) = 2βLC

SNcȳ6e4e
T
6 (2.4.31)

where ek is as usual the k-th versor of the canonical base.
The equilibrium point ȳ can be approximated by applying the Newton method
to find the root of:

f(y) = Ay + C(y ◦ y) + b (2.4.32)
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using the iteration:

ȳl+1 = ȳl − f(ȳl)

f ′(ȳl)
(2.4.33)

= ȳl − (A+ 2CDȳl)−1f(ȳl) (2.4.34)

and taking as the starting point ȳ0 the solution of the linear part Aȳ+ b = 0.
The system is therefore exponentially asymptotically stable if both σ(A) ⊂ C−

and σ(Ã) ⊂ C− are verified.
The iteration to compute the equilibrium point can be stopped when:

max
i
|ȳl+1

i − ȳli| < tol (2.4.35)

hence when the maximum error on each component of ȳl+1 is smaller than a set
tolerance, or after an arbitrary limit of maximum allowed iterations is reached.

2.5 Defining fitness measures

A fitness measure of a model is a single figure of merit, usually normalized to
[0, 1], that summarises how close the model is to achieving a set of aims.

Defining an appropriate fitness measure is the first necessary step for optimizing
the parameters of the model and evaluating its performance. In this section we
identify a fitness measure suitable for system (2.4.11) [p.48] and the corre-
sponding lesioned variations described in section 2.4.4, by gradually refining a
general formulation of a fitness measure until it encompasses all the aspects
that are required.

2.5.1 Fitness from distance

Let N be the number of integration steps in the interval t0, T . The step h is
therefore:

h =
T − t0
N

(2.5.1)

and the integration is done over the discrete set J = {ti = t0+hi}, i = 0, ..., N .
The solution y(t) to (2.4.10) [p.48] on J is represented by the matrix:

Y (J) =


y1(t0) · · · y1(tN)

...
...

ys(t0) · · · ys(tN)

 ∈ R
s×(N+1) (2.5.2)
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Similarly, given a reference solution vector of expected states yT , we can rep-
resent the reference solution with the corresponding matrix YT (J):

yT(t) =


yT1(t)

...

yTs(t)

 , YT (J) =


yT1(t0) · · · yT1(tN)

...
...

yTs(t0) · · · yTs(tN)

 ∈ R
s×(N+1)

(2.5.3)
where yT i is the reference solution of equation yi.

We can now define the error matrix:

E = (e)ij = Y (J)− YT (J) (2.5.4)

that can be used to compute the mean square error mse:

mse =
Tr

(
ETE

)
(N + 1)s

=

∑
i

∑
j e

2
ij

(N + 1)s
(2.5.5)

using which we can finally define a fitness f ∈ (0, 1] as:

f =
1

1 + mse
(2.5.6)

It is straightforward to see that f → 1 when mse approaches zero and con-
versely, f → 0 when mse grows towards infinity; a model is therefore perfectly
fit when f = 1.

2.5.2 Fitness tolerance as mean square error

The “closeness to one” (or tolerance) of the fitness measure is of course inversely
related to the magnitude of the mean square error. It is intuitively easy to impose
a fitness requirement in terms of “number of nines after the comma” to indicate
a wanted precision.

More formally, we can require f to be arbitrarily close to one by defining a
tolerance y and imposing f ≥ 1 − 10−y. The tolerance y can also be read
as the the maximum mse allowed; in fact, if we approximate the mse with a
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negative power of ten, from the fitness definition we obtain:

f = 1− 10−y =
1

1 + 10−x
(2.5.7)

10−y =
10−x

1 + 10−x
(2.5.8)

−y = log10

(
10−x

1 + 10−x

)
(2.5.9)

y = log10

(
1

10−x
+ 1

)
= log10 (1 + 10x) ≈ x (2.5.10)

hence the fitness tolerance y can be used as a direct and intuitive representation
of the (negative) order of magnitude we are requiring the mse to have, especially
if y is greater than one.

2.5.3 Accounting for variable steps

Some integration methods dynamically change the step size: when the prop-
erties of the dynamical system allow for it (i.e. the problem is not stiff) this
approach can greatly reduce the number of function evaluations necessary to
solve the equations within the required error tolerances.

The number and size of each step is therefore generally not know in advance
but becomes part of the solution which is now composed of two parts, namely
the discrete set of integration points Q and the solution vectors at each point:

Q = {t0, t1, ..., tN−1, T}, Y (Q) =


y1(t0) y1(t1) · · · y1(T )

...
...

ys(t0) ys(t1) · · · ys(T )


(2.5.11)

where ti < tj if i < j.

The definition of mse from (2.5.5) [p.55] needs to be extended to account
for the variability of the step size. Assuming that the reference solution yT is
known at each point in Q, we weight the error at each point using the width of
the interval it spans. In particular, we define:

mse =
1

s

N∑
i=1

(ti − ti−1)∥ei∥22
T − t0

, ei = y(ti)− yT(ti) (2.5.12)
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which remains conceptually equivalent to the one defined previously in (2.5.5) [p.55];
we can therefore keep the same definition of fitness as in (2.5.6) [p.55].

2.5.4 Accounting for early termination

Early termination can be set to happen on predefined triggers. For example, an
integration method can be stopped as soon as one component of the solution
changes sign or reaches a threshold. The brain models in this work express a
meaningful representation of reality only if all the modelled physical quantities
are positive: should a simulation ever reach a negative value in any component
of the solution, despite being numerically correct it is physically impossible, so
we can save time and computing power by stopping the integration early and
discarding that particular model.

Early termination makes it necessary to be able to compare the fitness of early-
terminated solutions among themselves and against any other solution. One
meaningful way of doing this is to scale the weighted variable-step fitness pro-
portionally to the time span that was actually integrated; in particular, let Ne

be the last integration step. We therefore define:

f =
tNe − t0
T − t0

1

1 + mse
, mse =

1

s

Ne∑
i=1

(ti − ti−1)∥ei∥22
tNe − t0

(2.5.13)

2.5.5 Partial fitness

When we are not interested in the fitness of the solution with respect to all its
components but only some of them, the error matrix (2.5.4) [p.55] can natu-
rally be reduced by zeroing (or removing altogether) the rows corresponding to
the components one wants to ignore, having care to also set the size s to the
number of components being considered.
Likewise, in the variable integration step case one should remove the com-
ponents to be ignored when computing the error vectors ei as defined in
(2.5.12) [p.56].

One may also want to ignore a portion of the simulation in the time domain, for
example, to disregard transient effects before the solution stabilizes (supposing
it does, indeed, eventually become stable). This can be achieved by averaging
only over the wanted time span; suppose the first useful time interval starts at
time tk, (2.5.13) becomes:

f =
tNe − tk
T − tk

1

1 + mse
, mse =

1

s

Ne∑
i=k+1

(ti − ti−1)∥ei∥22
T − tk

(2.5.14)
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2.5.6 Barrier (and range) fitness

There also cases in which the value of a desired solution is not explicitly known
(hence the error as defined previously is not conceptually significant), but there
is a relaxed constraint such as being smaller or bigger than a reference solution,
or may need to lay between two reference values.

This case can be handled in a sound way by considering errors with the appropri-
ate sign only. In particular, we can define a filtering function sieve : Rs → Rs

which, applied to the error vectors, selects only the components relevant to the
constraint.

For example, a sieve that considers only positive errors (and hence allows the
model to err on the negative side without constraints) on the first component
would be defined as follows:

sieve(e) =



max(0, e1)

e2

...

es


(2.5.15)

The sieve can then be applied before the norm of the error vectors when calcu-
lating the mse:

mse =
1

s

Ne∑
i=1

(ti − ti−1)∥sieve(ei)∥22
T − t0

(2.5.16)

2.5.7 Composed fitness measures

It is oftentimes necessary to define a fitness measure that is a composition of
other measures. For example, as will be discussed in detail later, the fitness of
a model with lesions can require a combination of fitness measures of different
instances of the model with some parameters tuned against different target
solutions.

The most straightforward way of combining fitness values is to geometrically
average them. Supposing to have n distinct fitness measures f1, ..., fn, the
combined fitness is therefore:

f =
1

n

n∑
i=1

fi (2.5.17)
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This average of fitness values, other than being straightforward, has the impor-
tant advantage that it allows to combine, in a intuitively meaningful way, values
which are not necessarily derived from a mean square error as described ear-
lier (for example, a synthetic score which evaluates the stability of the system,
or some other wanted property of a system, or a computational cost score; in
general any property that can significantly be mapped to [0, 1]).

It is nonetheless useful to understand the relationship between this synthetic
fitness values and the respective mean square errors they are derived from,
since it is important to know how an average fitness requirement translates to
the actual distance from a reference solution.

In the particular case where all fitness measures can be derived from a mean
square error (as in (2.5.6) [p.55]), averaging the mean square errors before
computing the final fitness:

f =
1

1 + 1
n

∑n
i=1msei

(2.5.18)

exhibits a more intuitive behaviour of the fitness measure since it is a linear
combination.

The bidimensional example in Figure 2.5 and Figure 2.4 can help in understand-
ing the difference between (2.5.17) [p.58] and (2.5.18). Note that when there
are only two errors to combine, the two expressions respectively simplify to:

favg =
1

2

(
1

1 + a
+

1

1 + b

)
=

a+ b+ 2

2(a+ 1)(b+ 1)
,

fmse =
1

1 +
a+ b

2

=
2

a+ b+ 2
(2.5.19)

which happen to be equivalent if a = b; it is evident that the average of fitness
values is not a linear function with respect to the mse.

It is therefore important to remember, when interpreting composed fitness val-
ues, that the averaged fitness measure do not translate directly to the mean
square errors unless the values being averaged are sufficiently close to each
other.

2.5.7.1 The vanished-in-the-average problem

The efficacy of fitness (2.5.6) [p.55] as a figure of merit unfortunately decreases
with the size s of the system under consideration: there are in fact infinite
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Figure 2.4: Comparison of the behaviour of averaging fitness mea-
sures ( (2.5.17) [p.58], left) with respect to averaging the mean
square errors ( (2.5.18) [p.59], right) in function of the mean square
errors a and b. The non-linear behaviour of the former is more evi-
dent when the mean square errors have greater magnitude.
It is also evident in the top left figure that the equal-fitness lines can
span whole ranges of one parameter when the other is near zero,
which means that in this condition the fitness function has become
insensitive to one of its components.
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Figure 2.5: Cross section of Figure 2.4, comparison of the behaviour
of averaging fitness measures ( (2.5.17) [p.58], blue) with respect to
averaging mean square errors ( (2.5.18) [p.59], orange), in function
of the mean square errors a and b, in the case of only two com-
ponents. Their equivalence is evident where a = b. The averaging
of mean square errors is more sensitive to the biggest error, hence
provides lower fitness value if one of the errors is big irrespectively
of the value of the smaller error.
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combinations of two or more mean square errors that can compute to the same
fitness value.

The formula represented on right side of Figure 2.4 is equivalent to the above-
mentioned fitness formulation in the case of a system of two equations; when
averaging mean square errors, it is indeed evident that having fixed a fitness
value as requirement, any optimization algorithm would not have any means to
distinguish a solution that fits both equations equally well over one that fits one
equation much better that the other.

This problem is unfortunately amplified by the average of fitness values as
defined in (2.5.17) [p.58]: the left side of Figure 2.4 clearly shows that with
this formulation, when one of the errors being averaged becomes really small
(hence, there is good fitness), the combined fitness measure also loses sensitivity
with respect to the other parameters: the equal-fitness lines become almost
orthogonal to the axis with the lower error.

Equation (2.5.17) [p.58] can be reformulated to mitigate this effect. In partic-
ular, we define:

f =

√√√√min
i
(fi)

1

n

n∑
i=1

fi (2.5.20)

This formulation reduces the loss of sensitivity when some of the combined
fitness values are much closer to 1 than others; Figure 2.7 shows how this
combined fitness grows much slower compared to the simple average, but still
behaves similarly when the averaged values are close enough.
In fact, there is an important difference: this combined fitness grows slower
than both the other measures when the two averaged values are very similar
and only one starts to grow (see the neighborhood of the points for which a = b
in Figure 2.7 and Figure 2.6).
This can be seen as a ridge (right side of Figure 2.6) in the combined fit-
ness function which assigns greater fitness values to errors similar in magni-
tude, and penalizes diverging errors magnitudes (provided their distance is small
enough). The extreme cases where some components have maximum fitness
(hence zero error) can still be problematic as we have discussed previously for
(2.5.17) [p.58], although the sensitivity loss is reduced: the mini(fi) term firmly
keeps the combined fitness low even in the extreme cases where many compo-
nents have maximum fitness and only one of them does not fit well.
The mitigated composed fitness (2.5.20) is therefore advantageous since, within
appropriate conditions, it can guide an optimization algorithm to prefer solutions
which have similar fitness values for all its fitness components.
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Figure 2.6: Comparison of the non-linear mitigation strategy (right)
with the previously discussed simple fitness average. The function’s
preference (in terms of fitness) for parameters with similar magni-
tude is visible as a ridge along the a = b line. The lack of sensitivity
at the extremes (whene a = 0 or b = 0) is still present, but miti-
gated.
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Figure 2.7: Cross section of Figure 2.6, comparison of the three
fitness averaging methods, in function of the mean square errors a
and b. The mitigated average (solid line) behaves like the intuitively
sound average of the mean square errors, but has the desirable
property of growing slower than the alternatives in an appropriate
neighbourhood of the optimum.
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2.5.7.2 Simplifications and optimizations

We have seen that formulation of fitness composition in (2.5.20) [p.62] poten-
tially outperforms the averaging of mean square errors, since it can guide an
optimizer to a solution with the preferred property of having a similar magnitude
of all values which are being averaged.
It is therefore useful to redefine the mse relative to a reference solution in is
such a way to take advantage of this formulation. In particular, we can split
the error matrix (2.5.4) [p.55] by rows, and combine fitnesses resulting from
each mse corresponding to each component of the status vector. We therefore
define:

f =

√√√√min
i
(fi)

1

s

s∑
i=1

fi, fi =
1

1 + msei
,

msei =
N∑
j=1

(tj − tj−1)e
2
ij

T − t0
, i = 1, .., s (2.5.21)

where eij is an element of the error matrix as previously defined in (2.5.4) [p.55].

Since the mean square error and consequently the fitness we just defined are non
surjective functions, it also make sense to further simplify the mse definition by
removing the scaling factor:

msei =
N∑
j=1

(tj − tj−1)e
2
ij (2.5.22)

This formulation is an upper bound for the previous definition of msei that is
not only less computationally expensive, but can also prevent numerical issues
when the time intervals and the errors shrink towards the machine’s numerical
precision µ.

2.6 Simulation setup

2.6.1 Free parameters and constants

As previously hinted is section 2.6.5 and 2.4.4, we require a subject’s model
to be able to reproduce its target data in four different states at the same
time: healthy (SHAM), dopaminergic lesion (6OHDA), noradrinergic lesion
(DSP4) and serotonergic lesion (pCPA). The combinations 6OHDA+DSP4 and
6OHDA+pCPA are instead constrained only to a target range, to be able to

65



also serve as a prediction (and hence as a measure of the agreement of the
model with experimental data).

Let Si be the set of parameters that define the model representing test subject
i. Si contains:

• 6 time constants: τGP, τStrD1, τStrD2, τSNc, τDRN, τLC. As discussed in
2.4.4, the time constants are derived from literature and are not optimized.

• SHAM: The healthy model instance has 20 free parameters: all α and β
parameters defined in system (2.4.1) – (2.4.6) [p.47]

• 6OHDA: The dopaminergic lesion instance has 4 free parameters: αDRN
SNc ,

αLC
SNc, β

LC
SNc, α

ext
SNc. Those are all the parameters of the SNc equation. All

the other parameters are considered constants and stay the same as in
SHAM.

• pCPA: The serotonergic lesion instance has 3 free parameters: αSNc
DRN,

αLC
DRN, α

ext
DRN, All the other parameters are considered constants and stay

the same as in SHAM.

• DSP4: The Noradrinergic lesion has 3 free parameters: αSNc
LC , αDRN

LC , αext
LC,

All the other parameters are considered constants and stay the same as
in SHAM.

• 6OHDA+pCPA, 6OHDA+DSP4: the combination of lesions do not have
any free parameters but are constructed by applying to the SHAM values,
in order, the appropriate parameters from each lesion.

The set Si therefore contains a total of 36 parameters, 30 of which must be
optimized at the same time to fit the available data. Appropriate subsets of the
parameters in Si are then used to build the corresponding matrices A,C,b to
completely define system (2.4.11) [p.48], and hence compute its solution and
properties.

We will from now on refer to Si as the complete model for subject i, since it
is the set of parameters that completely define it. The variations Skind

i , like
SSHAM
i , S6OHDA

i and so on, will refer instead to the subset of parameters which
are currently being applied to actually simulate the model.
We will denote one solution as:

SSHAM
i (y0, t0, T ) = Y =


y1(t0) · · · y1(tN)

...
...

ys(t0) · · · ys(tN)

 (2.6.1)
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Y is therefore the solution obtained by integrating the model in the interval
[t0, T ], with the starting vector y0, and using the SHAM subset of parameters.
The number N of integration steps, as well as their size, is usually variable
and chosen by the integration method case-by-case, hence it can potentially be
different for each subset of parameters.

2.6.2 Fitness measure

The fitness measure for subject Si is a composition of many fitness terms,
combined using (2.5.20) [p.62]. To completely describe the model of a subject,
other than its set of parameters Si, we need to represent its corresponding
set of target values Ti: Ti contains the reference solutions that the model is
supposed to reproduce when using the parameters in Si. Ti must therefore have
one reference solution for each of the states (healthy and lesions) that we are
modelling.
In particular, we assume that we can address a particular reference solution
from Ti in a similar way to the solution corresponding to particular subsets of
parameters in Si:

T SHAM
i (J) = YT (J) =


yT1(t0) · · · yT1(tN)

...
...

yTs(t0) · · · yTs(tN)

 (2.6.2)

under the assumption that Ti can provide the reference solution for any discrete
set of times J = {t0, ..., tN} which is decided by the integration algorithm dur-
ing the computation of the solution SSHAM

i (y0, t0, T ). The same notation of
course applies for the other cases, T 6OHDA

i , T pCPA
i and so on.

The subject index will intentionally be left out in the following sections to
lighten the notation further, since it’s not relevant in the context: the fitness is
of course computed independently for each subject in the same way.

2.6.2.1 SHAM fitness

The fitness of the healthy instance is divided in one fitness measure for each
equation.
To simplify the notation, we define:

• YT = T SHAM(J), the corresponding target solution

• y0 = T SHAM(t0) the starting vector
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• Y = SSHAM(y0, t0, T ), the simulation of the model using the appropriate
subset of parameters

• J = {t0, ..., tN ≤ T}, the time base chosen by the integration method

For each of the s equations in the status vector we can compute the corre-
sponding msei according to (2.5.22) [p.65]:

msei =
N∑
j=1

(tj − tj−1)e
2
ij, (e)ij = YT − Y, i = 1, .., s (2.6.3)

and finally the simulation-time-weighted fitness according to (2.5.13) [p.57]:

fSHAM
i =

tN − t0
T − t0

1

1 +msei
(2.6.4)

The set of measures for the SHAM instance is therefore:

F SHAM =
{
fSHAM
i |i = 1, ..., s

}
(2.6.5)

2.6.2.2 6OHDA fitness

Similarly to the SHAM case, we define:

• YT = T 6OHDA(J), the corresponding target solution

• yh0 = T SHAM(t0) the starting vector for the healthy case

• yl0 = T 6OHDA(t0) the starting vector for the 6OHDA case

• Y = S6OHDA(y0, t0, T ), the simulation of the model using the appropriate
subset of parameters

• J = {t0, ..., tN ≤ T}, the time base chosen by the integration method

• tc =
T−t0
2

, the time before which we ignore the solution’s fitness

In this case, from the available data we have only three reference solutions to
consider: GP, SNc and LC; in particular, the former is to be fitted exactly
from experimental data. The SNc fitness is a conceptual requirement since we
don’t have the corresponding exact experimental data: 6OHDA is a lesion of
neurons in SNc that in turn lowers the levels of dopamine. We therefore require
that the average activation frequency of SNc has to become at least as low
as indicated in the reference solution, but can be free to become even lower.
Similarly, available data suggests a lowered activity in LC to be at most 80%
of the healthy value.
We also require the solution to be stable with two different initial conditions:
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the solution should obviously be stable near the equilibrium point (the 6OHDA
solution yl0), but perhaps more importantly, a healthy subject (hence starting
with yh0) must be able to transition to the lesioned state (as it naturally occurs
in-vivo during the experiment) without incurring in instabilities. This also im-
plies that the first transient phase should be ignored in the computation of the
fitness; for that reason we defined tc as a threshold time before which we ignore
the solution. Particular care should be used in choosing t0, T and consequently
tc big enough with respect to the time constants of the system.
We therefore define two fitness measures for GP:

f 6OHDA
GP (yl0, t0, T, tc), f 6OHDA

GP (yh0, t0, T, tc) (2.6.6)

both are computed as in (2.6.5) [p.68]:

f 6OHDA
i (y, t0, T, tc) =

tN − t0
T − t0

1

1 +msei
, (2.6.7)

msei =
N∑
j=c

(tj − tj−1)e
2
ij, (e)ij = YT − Y, (2.6.8)

where Y, YT and hence J are of course computed accordingly to the selected y,
c is the index of the first t ≥ tc in J , and the index of GP in the status vector
happens to be 1, hence i = 1.

The fitness f 6OHDA
SNc for SNc is computed in a similar way, but also applying

a sieve function (as explained in section (2.5.6) [p.58]) that ignores negative
errors:

f 6OHDA
i (y, t0, T, tc) =

tN − t0
T − t0

1

1 +msei
, (2.6.9)

msei =
N∑
j=c

(tj − tj−1)max(0, eij)
2, (e)ij = YT − Y, (2.6.10)

where i is the index of the SNc equation in the status vector.

Following the same principles, we define the two fitness measures for LC:

f 6OHDA
i (y, t0, T, tc) =

tN − t0
T − t0

1

1 +msei
, (2.6.11)

msei =
N∑
j=c

(tj − tj−1)max(0, eij)
2, (e)ij = YT − Y, (2.6.12)
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where this time i is the index of the LC equation in the status vector.

The set of measures for the 6OHDA case therefore has four elements:

F 6OHDA =
{
f 6OHDA
GP (yl0, t0, T, tc), f

6OHDA
GP (yh0, t0, T, tc), (2.6.13)

f 6OHDA
SNc (yl0, t0, T, tc), f

6OHDA
SNc (yh0, t0, T, tc), (2.6.14)

f 6OHDA
LC (yl0, t0, T, tc), f

6OHDA
LC (yh0, t0, T, tc)

}
(2.6.15)

2.6.2.3 pCPA and DSP4 fitness

The fitness measures for this two instances are conceptually identical to the
6OHDA case; the fitness for GP is therefore computed according to (2.6.7) [p.69],
and the fitness for the lesioned areas use the the same sieve as in (2.6.9) [p.69]
(but of course selecting the correct lesioned area, respectively DRN and LC).
The sets of measures for this two instances are defined as:

F pCPA =
{
fpCPA
GP (yl0, t0, T, tc), f

pCPA
GP (yh0, t0, T, tc), (2.6.16)

fpCPA
DRN (yl0, t0, T, tc), f

pCPA
DRN (yh0, t0, T, tc)

}
(2.6.17)

FDSP4 =
{
fDSP4
GP (yl0, t0, T, tc), f

DSP4
GP (yh0, t0, T, tc), (2.6.18)

fDSP4
LC (yl0, t0, T, tc), f

DSP4
LC (yh0, t0, T, tc)

}
(2.6.19)

2.6.2.4 Lesion combination fitness

The combination of lesions is left as unconstrained as possible to be able to serve
as a prediction; we do however at least require the corresponding simulation
not to diverge and to lie within an acceptable range. In the experiment lesions
are applied in succession, 6OHDA always first. It makes sense to require the
solution to be stable with both yh0 = T SHAM(t0) and yl0 = T 6OHDA(t0) as
initial conditions. We define a fitness which only considers the temporal span
of the solution to penalize early divergence:

f 6OHDA+DSP4(y, t0, T ) =
tN − t0
T − t0

, f 6OHDA+pCPA(y, t0, T ) =
tN − t0
T − t0

(2.6.20)
where J and consequently tN , t0 are computed from the corresponding simula-
tion
S6OHDA+lesion(y, t0, T )

Additionally, we require the GP value of 6OHDA+pCPA to be within reason-
able limits. In particular, we define specific limit fitness functions similar to
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(2.6.9) [p.69], for example the lower bound:

f 6OHDA+pCPA
i,min (y, t0, T, tc) =

tN − t0
T − t0

1

1 +msei
, (2.6.21)

msei =
N∑
j=c

(tj − tj−1)min(0, eij)
2, (e)ij = YT − Y, (2.6.22)

YT = T 6OHDA+pCPA−min(J) (2.6.23)

where i is again the index corresponding to GP and T 6OHDA+pCPA−min(J) is
the reference solution containing the lower bound; likewise the upper bound will
be defined similarly but using max as an error sieve against the upper bound
reference solution T 6OHDA+pCPA−max(J). This limits are necessary to guide the
optimization towards a solution which lies within the experimentally determined
range and exclude instead solutions which may exhibit better fitness scores but
are outside of the physiological range.

The set of measures for the combination of lesions is therefore:

FCOMB =
{
f 6OHDA+DSP4(yh0, t0, T ), f

6OHDA+DSP4(yl0, t0, T ), (2.6.24)

f 6OHDA+pCPA(yh0, t0, T ), f
6OHDA+pCPA(yl0, t0, T ), (2.6.25)

f 6OHDA+DSP4
GP,min (yh0, t0, T ), f

6OHDA+DSP4
GP,min (yl0, t0, T ), (2.6.26)

f 6OHDA+DSP4
GP,max (yh0, t0, T ), f

6OHDA+DSP4
GP,min (yl0, t0, T ), (2.6.27)

f 6OHDA+pCPA
GP,max (yh0, t0, T ), f

6OHDA+pCPA
GP,min (yl0, t0, T ), (2.6.28)

f 6OHDA+pCPA
GP,max (yh0, t0, T ), f

6OHDA+pCPA
GP,max (yl0, t0, T )

}
(2.6.29)

2.6.2.5 Parameters constraints

The fitness function can also be useful to impose soft, dynamic constraints on
the parameters. In this case, it makes sense to require the αext parameters of
a lesion to be less or equal than its counterpart in the SHAM instance: that
particular brain area have been damaged, and it makes sense to assume it would
lower its average activation frequency in absence of other stimuli.
We define the fitness measure:

fPAR
l =

1

1 +max(0, Sl − SSHAM)
(2.6.30)
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where l is one of the three lesions (6OHDA, DSP4, pCPA) and Sl − SSHAM

represent the difference between the altered αext parameter in the lesioned
subset and its counterpart in the healthy one.

As usual, we define the set:

F PAR =
{
fPAR
6OHDA, f

PAR
DSP4, f

PAR
pCPA

}
(2.6.31)

2.6.2.6 Asymptotic stability constraints

Every subject state considered in this study is supposed to be stable in time; it
is therefore important to impose that each set of parameters defines an asymp-
totically stable system which will ultimately never diverge from its equilibrium
point.
As shown in section 2.4.6, system (2.4.1) – (2.4.6) [p.47] is exponentially asymp-
totically stable if σ(Ã) ⊂ C−, where A = A+ 2CDȳ (see (2.4.30) [p.53]).
We can therefore envisage a fitness measure:

fSTAB
l =

1

1 +
∑

imax(0,R(λi))
(2.6.32)

where l is one of the parameter subsets which define the model (SHAM, 6OHDA,
etc.), and λi is an eigenvalue of the corresponding Ã. This measure will there-
fore always be 1 when the system is asymptotically stable, but tend to zero as
the real part of the eigenvalues grows more positive.

The computation of Ã requires using an iterative root-finding method to deter-
mine the equilibrium point ȳ of each parameters set A,C,b. It is advantageous
to use multiple stopping conditions for this method to avoid unnecessary com-
putation, in particular:

• A tolerance on the precision of ȳl as defined in (2.4.35) [p.54]; this
tolerance should be set to be compatible with the precision obtained with
the parameters optimization algorithm. For example, if the optimization
fitness required translates to an mse of 10−8, it makes sense to require
tol = 10−9.

• A arbitrary guard on the maximum number of allowed iterations; since
precision is not of paramount importance in this context, the number of
iterations can be kept rather small (≤ 25).

• A guard on the value of the components of ȳ. If the method is converging
to an equilibrium point which has some components which are too big
or negative, the stability of the system is ultimately meaningless in the
context of this study, therefore it is not worth investing computing power
in obtaining it with high precision.
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We finally define the set:

F STAB =
{
fSTAB
SHAM , fSTAB

6OHDA, f
STAB
DSP4 , f

STAB
pCPA , (2.6.33)

fSTAB
6OHDA+DSP4, f

STAB
6OHDA+pCPA

}
(2.6.34)

2.6.2.7 The fitness, at last

We now have all the elements needed to compute the fitness of subject Si.
Let F be the union of all the sets of measures we have defined:

F = F SHAM∪F 6OHDA∪F pCPA∪FDSP4∪FCOMB∪F PAR∪F STAB (2.6.35)

we can now combine all the fitness measures we identified according to (2.5.20) [p.62],
to obtain the total (or final) fitness figure:

f =

√√√√min
i
(fi)

1

n

n∑
i=1

fi, fi ∈ F, n = |F | (2.6.36)

2.6.3 Integration method

Given a set of parameters S and an initial value y0, system (2.4.1) – (2.4.6) [p.47]
is completely defined; we however need to choose an appropriate integration
method to compute the solution of the initial value problem, to then in turn
compute its fitness or examine the behaviour of the system in time.

The Backward Differentiation Formula (BDF) is a family of implicit linear mul-
tistep methods for numerical integration of ordinary differential equations [73].
In particular, the initial value problem:

y′(t) = f(t,y(t)), t ∈ [t0, T ], y(t0) = y0 (2.6.37)

is approximated on a mesh J = {t0 + ih|i = 0, ..., N} by:

k∑
i=0

αiyn+i = hβfn+k (2.6.38)

where k is the order of the method, yn ≈ y(tn), fn = f(tn,yn), h is the
integration time step and the coefficients αi, β are chosen such that the method
achieves the maximum order† k. Note that the method is implicit, so at each
step it also requires the numeric solution of the generally non-linear equation:

g(yn+k) := yn+k − hβf(tn+k,yn+k) = 0 (2.6.39)

†The order conditions for a method impose a limit to the approximation error at each inte-
gration step which is proportional to the step size (O(hp+1)) [73; 74]
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This integration schema can be extended to also provide automatic and dynamic
selection of the step size and the order of the method on a integration step basis;
after each iteration, error estimations and computational cost predictions are
used to modify order and step size if possible and favourable [75; 76].

The implementation used in this work, provided by python’s scipy package
[77] is a variable order (1 to 5), variable step scheme; it also supports external
conditions checks at each iteration, so the integration can be stopped early,
for example when one component of the solution becomes negative or grows in
magnitude over a set threshold.
In the context of this work, both stopping conditions (on negative or too high
solution component values) are being applied to avoid wasting computation time
on obviously not acceptable solutions during the optimization phase. Unfortu-
nately scipy’s implementation does not provide a handle to stop the algorithm
early in case the computed step size becomes smaller than a set threshold (and
hence the integration would perform too many integration steps). It was there-
fore necessary to externally impose a time limit to intercept and stop early in
such cases.

2.6.4 Optimization strategy

The fitness function we defined in (2.6.36) [p.73] is not differentiable in at
least some points (since it composes functions which are not differentiable on
the whole domain, like min) and is not uni-modal, i.e. it has more than one
maximum (since system (2.4.12) [p.49] has infinite solutions for y′ = 0 with
respect to the free parameters (a)ij and b). We have no indication of where
a good solution may lie in the parameter space, hence we need a global opti-
mizer which will not be affected by the initial conditions. Furthermore, we want
to restrict the range of the free parameters (in sign and magnitude): we are
therefore in need for a non-derivative based and constrained global optimization
algorithm.
According to [78], differential evolution (DE) is a modern and reliable algo-
rithm that fulfills all this requirements; in particular we use the implementation
provided by python’s scipy package [79].

DE is a population-based optimizer. The objective function is sampled at multi-
ple, randomly chosen initial points (within the domain constraints) which form
the initial population of Np vectors. Similarly to other population-based meth-
ods (like Nelder-Mead for example), the population is replaced by new vectors
which are perturbations and combinations of the existing ones in successive
stages.
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Figure 2.8: A flowchart representation of the Diffirential Evolution
optimization algorithm [78].
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The most basic implementation of DE is described by the following pseudo-
code, in which xi is one of the Np vectors of the population of one generation;
this population will be replaced by the vectors being defined as yi during the
next generation. f is the fitness we want to maximize, and F ∈ (0, 1) is called
the scale factor :

1 while (convergence criterion not met):
2 for i in range(Np):
3 r1 = random_int(0, Np)
4 r2 = random_int(0, Np)
5 r3 = random_int(0, Np)
6 ui = xr3 + F * (xr1-xr2)
7 if f(ui) >= f(xi):
8 yi = ui

9 else:
10 yi = xi

This strategy of generating new vectors, called mutation, is usually paired with
another one, called crossover, which acts on the individual components of the
vectors. In particular, an intermediate candidate vector vi is generated by
mutation from three randomly selected members of the population xr1,xr2,xr3

as shown before in the pseudocode:

vi = xr3 + F (xr1 − xr2) (2.6.40)

but additionally, the candidate vector for replacing xi, ui, has its components
randomly selected from either xi or vi:

(ui)j =


(vi)j, if rand(0, 1) ≤ Cr

(xi)j, otherwise
(2.6.41)

where Cr ∈ [0, 1] defines the crossover probability. ui is then selected instead
of xi if f(ui) >= f(xi) as before. Evidently many details are being omitted for
the sake of simplicity: at the very least, it is important to ensure that the three
vectors involved in the mutation are in fact distinct from each other and that
the new candidate vector has all its components within the allowed bounds.
The combination of mutation and crossover allows DE to perform accept-
ably well on functions that are either decomposable† or non-decomposable,
while maintaining rotational invariance‡ [78]. Figure 2.8 illustrates DE with a

†A decomposable function can be written as the sum of D one-dimensional functions: f(x) =∑D
i=1 fi(xi).

‡An algorithm is rotationally invariant if its performances do not depend on the objective
function being aligned with a privileged coordinate system.
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flowchart.

There are also a plethora of strategies to choose the three candidate vectors
for the mutation, which can have dramatic effects on the convergence speed
on some problems. For example, the base of the mutation (xr3 in the previous
examples) could be the best candidate from the previous generation instead of
a random one, to make the algorithm more greedy. The distribution that is
used to check the crossover condition Cr can also be changed, as well as the
number of vectors used to generate the mutation.
In general, strategies are indicated with triplets, for example DE/rand/1/bin
indicates the “standard” DE (which we just described), where a random vector is
used as the base for the mutation against one difference of two other vectors, and
crossover is checked against a binomial distribution; DE/best/1/exp instead is a
more greedy variant that uses the best candidate from the previous generation
as base for the mutation, and the crossover is checked using an exponential
distribution.

To summarize, there are five basic parameters which define the behaviour of
DE:

• Population size Np

• Mutation scale F

• Crossover threshold Cr

• Selection strategy: DE/rand/1/bin, DE/best/1/exp, DE/best/2/bin,
DE/rand-to-best/1/bin, ...

• Initial distribution of the Np vectors in the allowed space: random, uniform
grid, halton, sobol, ...

Following recommendations and performance evaluations on similar problems
[80; 78], together with empirical tests, it was determined that populations
strongly in excess of 2D vectors (where D is the number of free parame-
ters, hence the size of the vectors) do not provide higher probability of con-
vergence while rising the computational cost significatively instead. The strat-
egy DE/best/1/exp, with Cr = F = 0.95 and a uniform halton distribution,
together with Np = 3D proved to offer good performances on this particular
problem.

2.6.5 Synthetic target data

The experimental data we have collected, summarized in sections 2.3.1, 2.3.2
and 2.3.3, ultimately consists of normal distributions around their respective
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Figure 2.9: Generated target values distribution for the SHAM case.
Values for each individual are generated according to 2.6.5: each
area follows a normal distribution around a center value with a
maximum spread of ±50% (4σ = 0.5µ). Lesioned activation values
of an area, when defined, are scaled according to the table presented
in section 2.6.5. The dots also directly show the datapoints, the
left-right scattering of the dots is random, applied only to help
visualization and do not carry any meaning. The placement of the
mean line, box, whiskers and fliers is illustrated in Figure A.1.
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Figure 2.10: Generated target values distribution for the all cases:
in black, the SHAM case. The 6OHDA dopaminergic lesion target
(red) differs from SHAM only for SNc and LC. The serotonergic
pCPA lesion target (yellow) differs from SHAM only in for GP and
DRN. Finally, the noradrenergic DSP4 lesion target (blue) differs
from SHAM only for LC.
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center values which are to be considered constant; we do not have explicit
information about the dynamic behaviour of the system or of the transition
from a state to the other. Of course, each subject must go through a dynamic
transition from a healthy state to a lesioned state, but both states must be
asymptotically stable solutions for the model.
Since there is no single study in literature that lists all the required brain areas
activation values for a particular subject at the same time, we have no choice
but to generate a synthetic population of virtual subjects with area activation
values which lie within the distributions identified across the literature.

In particular, we will generate a number of subjects Si and each of them will
have associated a set of target values Ti which are defined as follows:

Area Value

GP ← N (22, 22 · 1
8
)

GP6OHDA = GP

GPpCPA = GP · 0.65

GPDSP4 = GP

GP6OHDA+pCPA−max = GP · 0.75

GP6OHDA+pCPA−min = GP · 0.65

GP6OHDA+DSP4−max = GP

GP6OHDA+DSP4−min = GP · 0.65

StrD1 ← N (10, 10 · 1
8
)

StrD2 ← N (9, 9 · 1
8
)

SNc ← N (4.47, 4.47 · 1
8
)

SNc6OHDA = SNc · 0.1

DRN ← N (1.41, 1.41 · 1
8
)
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DRNpCPA = DRN · 0.3

LC ← N (2.3, 2.3 · 1
8
)

LC6OHDA = LC · 0.8

LCDSP4 = LC · 0.2

where x← N (µ, σ) indicates that x is a random number drawn from a normal
distribution using the provided parameters.
Given the completely synthetic nature of this data, it is reasonable to assume
activities of every area to follow a normal distribution; we impose every value
to lie within ±50% of the center value by putting 4σ = 1

2
µ. Since data from

literature can be interpreted as an average percentage change in activity for
lesioned areas, we decided to treat the generated healthy value for an area
as the reference level of an individual and use that as a base to generate the
lesioned values where needed. In this way, a subject that has a higher than
average value for an area in healthy conditions, will also have an higher than
average level in the same area when lesioned, although the value will change by
the required proportional amount.

Reference solutions for subject i are therefore composed of constant values.
Given a vector of times J = [t0, ..., tn], we can define the reference solution
matrices:

TL
i (J) =


GPL · · · GPL

...
...

LCL · · · LCL

 ∈ R
s×n+1 (2.6.42)

where L is one of SHAM, 6OHDA, pCPA, DSP4, 6OHDA+pCPA, 6OHDA+DSP4;
the appropriate value of each area for the respective lesion is chosen according
to L when available, otherwise defaults to the SHAM (not labeled) value. Fig-
ure 2.9 shows the distribution of target values for the whole population in the
SHAM case, while Figure 2.10 offers an overview of the target values for all
cases.
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2.6.6 Choosing the simulation time span

The simulation time is arbitrarily set to 0.5s under the assumption that the basic
behaviour of each equation in the system will resemble (2.4.18) [p.50], hence
the transition time between any state to a stable solution will be dominated by
the slowest time constant (which is derived from literature). In fact, since the
solution to:

y′(t) = −1

τ
y(t) + k (2.6.43)

assuming y(0) = 0, is
y(t) = −kτe−

t
τ + kτ (2.6.44)

we can compute the time it takes for the solution to grow past 99% of its limit
value:

0.99kτ = −kτe−
t
τ + kτ ⇒ t = log(0.01)τ ≈ 5τ (2.6.45)

(which in engineering contexts is broadly known as the “rule of the five taus”).

In this specific case, the slowest τ ≤ 20ms, therefore we can assume the tran-
sient phase to be finished after 5 · 0.02 = 0.1s, and a time 5 times longer, 0.5s,
should be adequate to see a long stable steady state, and we would expect the
dynamic behaviour to have stabilized already around 0.1s. The GP equation in
the right graph of Figure 3.10 gives a good example of the five taus rule.
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Chapter 3

Results

What I love about science is that as you learn, you
don’t really get answers. You just get better
questions.

John Green

3.1 Performance and computational costs

A population of 240 target individuals has been generated from the specification
described in section 2.6.5. Figure 2.9 and Figure 2.10 illustrate the distribution
of the generated data for each brain area. Each individual’s target parameters
are optimized using the differential evolution algorithm, as described in section
2.6.4, applied to the combined fitness function (2.6.36) [p.73].
The parameters for the optimization algorithm have been empirically determined
following available rules-of-thumb and performance measurements on other rel-
evant problems ([78; 80; 79]); in particular the strategy that showed the highest
probability of convergence on this particular problem is best1exp with muta-
tion and recombination both set at 0.95 with a pool of 90 competitors (three
times the number of free parameters). Bigger pool sizes dramatically slow down
convergence without significantly increasing the probability of converging on a
fit solution, while smaller pool sizes would usually not manage to get past some
local minima.
Figure 3.1 (in red) also shows that where there is convergence, the fitness is log-
arithmically approaching its upper limit of 1; the optimization is stopped at the
arbitrary measure of fitness greater or equal to 1− 10−8 = 0.99999999, which
is abundantly sufficient for the purpose of this work. The graph also shows
that at this fitness, there is no experimental evidence that the fit could not be

83



Figure 3.1: Fitness history of a few individuals over generations
(left) and time (right), as absolute value (blue) or logarithmic tol-
erance (red, see section 2.5.2). Not all generations take the same
amout of time (and hence have broadly different computational
costs); this can be due to the integration method having to select a
higher order or finer integration step with some parameters combi-
nations, or to particularly unlucky CPU load patterns. Some outer
optimization cycles are also clearly visibe (section 3.1.1)

improved more if given more processing time (when a “definitive” local fitness
maximum is reached, the fitness grownth in logarithmical scale also stagnates,
as can be seen in the failed attempts from figure Figure 3.1).
With the chosen optimization parameters, an individual takes an average 13859
generations to converge to the desired precision. With a pool of 90 competi-
tors, we can assume a slightly pessimistic estimate of about one and half a
million fitness evaluations per individual. Each fitness evaluation involves the
integration of 6 distinct systems of equations, for which we require a minimum
of 50 time steps. The computational cost, ignoring the implementation details
of the BDF algorithm used to integrate, the asymptotic stability checks and the
mean square error computation, is in the order of 109 matrix multiplications
per individual. As shown in the graph, the machines that were used for fitting
the models (a 16-core AMD Ryzen 9 5950X, a 14-core intel i9 1200H, and a
6-core intel i7 3930k) take on average 5.87 hours to fit each individual. It
is to be noted that, despite each generation being embarrassingly-parallelizable,
the computation of 90 fitness measures distributed over sixteen 4 GHz cores
is still very fast, and the CPU occupancy can be low because of the synchro-
nization required in between two subsequent generations; the same time per

84



Figure 3.2: Example of machine load while optimizing three subjects
in parallel.

individual therefore can still hold when optimizing more individuals in parallel
on the same machine, which in turn can bring the CPU occupancy up to about
100% constant (Figure 3.2). Optimizing more individuals in parallel may of
course penalize the optimization time of some individuals, but yields a better
throughput overall.
Conceptually, each individual’s optimization could be made faster by paralleliz-
ing the six integrations which compose the fitness computation. However, since
the computational cost of a single integration is relatively small, the process
creation overhead takes over as the most computationally expensive part of
the task, effectively making that approach ineffective; parallelization at two
higher levels (single competitor within an individual and individuals) proved to
be the most efficient approach. Arguably, parallelizing only at the highest (in-
dividual) level would be the most computationally efficient approach; given the
exploratory nature of this work, however, also minimizing waiting times for each
individual’s optimization was a priority: partial results could be examined with
much shorter waiting times while testing and evaluating multiple models and
configurations.
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Figure 3.3: An example of the optimizer’s sensitivity to the random
number generator seed. This particular individual’s optimization
terminated after 2098 iterations for lack of variance among the
competitors, stuck in a low local minima. The second cycle reset
the initial point to be the same as the first cycle but used a different
seed: this time, there is convergence.

3.1.1 Reproducibility and the need for outer optimiza-
tion cycles

Reproducibility is essential. In the case of this work, which involves a fair
amount of random processes, reproducibility have been ensured by using a fixed
seed for every pseudo-random number generator: the target values (generated
as described in section 2.6.5) as well as all optimization results can be consis-
tently reproduced (provided one uses exactly the same seeded random number
generation algorithm, of course).
Unfortunately, Differential Evolution has empirically proven to be sensitive to
the seed used: the optimization of the same individual’s parameters may succeed
with one particular seed, but converge really slowly or completely fail to con-
verge with another. This effect have been mitigated by exploiting the early stop
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Figure 3.4: The final fitness distribution of the models, expressed
as f = 1− 10−x. The stopping criterion of f ≥ 1− 10−8 was often
exceeded within the last generation.

condition on the competitors distance: when the average distance between all
competitors becomes smaller than a set tolerance during an optimization gen-
eration, differential evolution can be stopped early independently of the fitness
value reached; in fact, when the entire population of competitors have con-
verged to similar vectors the algorithm is stuck in a minimum, either local or,
hopefully, global. In this particular case, it has proven overall advantageous
to stop the optimization early, with a relatively big distance tolerance (hence
not wasting too much time without any significant fitness improvement), and
instead restart it with different random seeds, de-facto implementing an outer
optimization cycle around the original differential evolution algorithm. An ex-
ample of the efficacy of this strategy is shown in Figure 3.3. The outer cycles,
when present, can clearly be seen in the graphs of Figure 3.1: the growth of
the fitness slows down to a stop. The competitors variance diminishes until it
reaches the set threshold, at which point the optimization restarts hence the
fitness also drops back to the initial value, and subsequently starts rising again
as the algorithm progresses. It has experimentally proven advantageous to com-
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pletely abandon a badly fitting solution stuck in a local minima and restart the
optimization from the original initial point instead of keeping the local minima
solution as a starting point for the new optimization cycle.
Finally, 240 models have been optimized to fit the corresponding subjects target
values with the desired fitness value f ≥ 1−10−8, as summarized in Figure 3.4.
All optimized models are exponentially asymptotically stable in all six lesion
conditions, since the eigenvalues of the Ã matrix ( (2.4.30) [p.53]) all have
strictly negative real parts.
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Figure 3.5: Distribution of the real parts of the eigenvalues of
Ã (2.4.30) [p.53] for all the optimized subjects and the six le-
sion groups. All the eigenvalues have negative real part, hence all
the subjects are exponentially asymptotically stable in all cases, as
enforced by the fitness measure component (2.6.32) [p.72].
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Figure 3.6: Comparison of the distribution of the simulation fi-
nal value of each area for SHAM (left) and lesion 6OHDA (right)
over the whole population. The grey boxes represent the reference
solution values distribution while the blue ones describe simulated
results. All areas overlap in the SHAM case as required by the fit-
ness measure; in the 6OHDA case only GP and SNc overlap as they
are exactly part of the fitness measure, LC is subject to an upper
constraint, and the other areas are all predictions.

Figure 3.7: Comparison of the distribution of the simulation final
values of each area for lesions DSP4 (left) and pCPA (right).
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Figure 3.8: Comparison of the distribution of the simulation final
values of each area for the lesion combinations 6OHDA+DSP4 (left)
and 6OHDA+pCPA (right).

Figure 3.9: Distribution of parameters over the fitted population.
The parameters starting with a lesion name are the ones that replace
the parameter with the same name when lesions are applied.
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3.2 Target data reproduced by the simulation

As described by Figure 3.4, all models fit the corresponding target values with
a fitness f ≥ 1 − 10−8 measured using (2.6.36) [p.73]; since the measure
is dominated by the smallest fitness value being combined, the mean square
error (as defined in (2.5.22) [p.65]) of each component of the solution from
its reference value can certainly be estimated to be smaller than 10−6, which
is a suitable precision for the purposes of this work. Figure 3.6, Figure 3.7 and
Figure 3.8 show the final values of the whole population for all areas and all
six groups. In particular, the grey box plots represent the target distribution of
solution values while the colored ones represent the distribution of the simulated
solution values for each group. The simulated values for the SHAM case overlap
the target values (with the error mardin described earlier) for all six areas, since
the values for all areas are part of the fitness measure. In the lesion groups,
the limit constraints on the lesioned areas are clearly visible; all other areas are
instead purely predictions. Figure 3.5 show the distribution of the eigenvalues
of Ã in the six cases; the fitness measure successfully guided the optimization
algorithm towards an asymptotically stable solution.

3.3 Model parameters distribution and typi-
cal solution behaviour

The search space for all parameters has been equally restricted to the range
[0, 105]; all parameters have been defined to be positive numbers in the for-
mulation of the model (hence the lower limit is zero) while the upper limit is
arbitrary (although much higher figures would not carry physiological meaning
since a brain area certainly can not change its average activation frequency
infinitely fast, excluding the case of a sudden catastrophically traumatic event
which we are not considering in this study). Figure 3.9 illustrates how the
parameters of each model distribute among the entire fitted population. Fig-
ure 3.10, Figure 3.11 and Figure 3.12 show instead the dynamic behaviour of
one of the simulated subjects in all conditions: every graph starts with the
model in the healthy state, then a lesion is applied. In this model, the lesion
is instantaneous, and the transients show the transition of each area to its new
equilibrium point determined by its time constants and strength of interaction
with the other areas. As expected from the simulation time choice motivated
in 2.6.6, 0.1s is usually enough to see a stabilization of the dynamic behaviour.
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Figure 3.10: Example of the behaviour of a healthy subject’s brain
areas, when a dopaminergic lesion is applied at T=0.1.

Figure 3.11: Example of the behaviour of a healthy subject’s brain
areas, when a noradrenergic (left) or serotonergic (right) lesion is
applied at T=0.1.
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Figure 3.12: Example of the behaviour of a healthy subject’s brain
areas, when a dopaminergic lesion (applied at T=0.1) is combined
with a noradrenergic (left) or serotonergic (right) lesion is applied
at T=0.2.

Figure 3.13: Example of directly applying a combined lesion. An
equilibrium point is reached as in Figure 3.12, as explicitly required
by the fitness measure (in particular, the rules in (2.6.24) [p.71]).
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3.4 Comparing simulated results with exper-
imental data

Figure 3.14 illustrates the distribution of the simulated values for GP in the six
groups. When considering the whole population, the distributions for SHAM,
6OHDA, pCPA and DSP4 are identical but for center value and scale by def-
inition, as imposed by the target data (section 2.6.5) and the fitness measure
(2.6.36) [p.73]; the distributions for the combinations of lesions are instead
more predictive in nature, since they are constrained by a range limit.
While it is possible to independently apply and measure different lesions on
a simulated subject, this is not possible in experimental conditions: different
lesions cannot be applied independently at different times since they are per-
manent, and some measurements unfortunately imply the death of the subjects
being examined. Therefore, in real studies, the same subject can be measured
only once and can belong to only one group.
To reproduce this conditions, we subdivide the simulated population in groups
and use each virtual subject only once. The right side of Figure 3.14 shows
an example of how using smaller, independent groups to measure each area
affects the final distribution. Figure 3.15 to Figure 3.19 illustrate the distribu-
tions for all the other areas; the effects of each lesion and their combinations
on the interested areas (SNc, DRN and LC) is clearly visible. Figure 3.20 gives
a less quantitative and more qualitative overview of the same data, this time
presented as histograms with an associated standard error and statistical signif-
icance. Finally, Figure 3.21 (left) presents the same data as Figure 3.14 (right),
but offers a direct comparison with the experimental measurements presented
in [52] (right).

All the error bars of histograms in this work are set to represent the standard
(mean) error ([81; 82]):

E =
S√
n

(3.4.1)

where S is the estimated standard deviation:

S =

√∑
(X − x̄)2

n− 1
, X ∈ {samples}, |{samples}| = n (3.4.2)

3.4.1 Statistical significance

As mentioned in the previous section, to have a statistic that is comparable
with the ones found in literature, each synthetic subject must be treated as if
they were real and can therefore only belong to one group and be measured
only once.
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Figure 3.14: Distribution of the simulated equilibrium points for
the GP area. Values for SHAM, 6OHDA, pCPA and DSP4 are
fitted exactly on the required value, the combinations are instead
predictions, with the values being only range-constrained with the
rules FCOMB ( (2.6.24) [p.71]). On the left the distribution is over
the whole population (synthetic result), on the right, the population
is sliced to have each subject in only one group (which reproduces
real laboratory conditions, one subject can only be measured once,
and belongs to one group only (section 3.4.1)

It can be insightful, however, to sometimes look at a broader picture where all
subjects are measured at the same time; each graph title in this work, when
relevant, declares if it is representing values of the whole population, of if the
population was split in even groups (in which case, it reports the number of
subjects in each group).
Statistical significances are always computed on split groups.

Statistical significance is assessed through the analysis of variance (ANOVA)
tests, which determines if the means of two or more sample groups are statis-
tically significantly different through a synthetic index called F -value. Without
delving deep into the details, this test is valid under the assumptions that:

• The samples are independent

• Each sample is from a normal distribution

• The groups have equal standard deviations.

Let G be the set of groups and xg,i the i-th sample in group g and x̄g the mean
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Figure 3.15: Distribution of the simulated equilibrium points for the
StrD1 area, as in Figure 3.14.

value of group g. The sum of squares within groups (SSW) is defined as:

SSW =
∑
g∈G

∑
i

(xg,i − x̄g)
2 (3.4.3)

therefore, it is the sum of the square differences of the samples of each group
compared to the mean value of the group. The sum of squares between groups
(SSB) is defined as:

SSB =
∑
g∈G

(x̄g − x̄)2, x̄ =

∑
g∈G x̄g

|G|
(3.4.4)

therefore, it is the sum of the square differences between the mean of each
group and the grand mean. We now define the degrees of freedom between
(dofB) and within (dofW ) groups:

dofB = m− 1, dofW = n−m, m = |G|, n =
∑
G

|g| (3.4.5)

hence n is the number of groups and n is the total number of samples. We can
finally compose the F -value:

F =
SSB/dofB
SSW/dofW

(3.4.6)

The statistical significance is then assessed by comparing the found F-value to
a critical value of the Fisher density distribution function, which is different for
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Figure 3.16: Distribution of the simulated equilibrium points for the
StrD2 area.

each set of degrees of freedom and wanted confidence. When the F -value indi-
cates a significative result, a p-value must also be computed (P (F0 < X <∞))
to assess the reliability of the result (Figure A.2 shows the relationship between
F - and p-values).
If the ANOVA test is significative, at least one of the groups is significantly
different from the others. All group combinations must be now tested in pairs
to infer which group is distinguishable by which other; in particular we can ap-
ply Tukey’s test, which performs pair-wise tests, conceptually similar to t-tests
or ANOVA, but scales the results to take into account the existence of all the
other groups.
Fisher’s functions and the associated p-values may result fairly complex to com-
pute, but there are many available open-source tools specialized in that. In
this work we relied on python’s scipy implementation of one-way-ANOVA and
Tukey’s tests ([83; 84]). Detailed analysis and discussions on the analysis of
variance here just briefly described are in [81; 85; 82; 86; 87; 88; 89].
Histograms in this work have been marked with statistical significance according
to the following table:
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Figure 3.17: Distribution of the simulated equilibrium points for the
SNc area, which is affected by the 6OHDA lesion.

mark meaning

**** p-value ≤ 0.0001

*** p-value ≤ 0.001

** p-value ≤ 0.01

* p-value ≤ 0.05

no mark p-value > 0.05

where the leftmost column, which usually refers to the SHAM case, is used as
the comparison base.

3.4.2 Empirical sensitivity analysis

The sensitivity of each simulated brain area with respect to each parameter of
the model can be empirically estimated: Each parameter can be varied inde-
pendently (within some acceptable range) to record its effects on the simulated
brain areas; similar observations can be replicated for all individuals of the avail-
able population, and the average excursion of each area can then be compared
with the average excursion of the parameter to infer a sort of “parameter im-
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Groups: 0:+SHAM 1:+6OHDA 2:+pCPA 3:+DSP4 4:+6OHDA+pCPA
5:+6OHDA+DSP4↪→

ANOVA: F=1.734e+02, p=1.403e-76, dofB=5, dofW=234
Tukey's HSD Pairwise Group Comparisons (95.0% Confidence

Interval)↪→

Comparison Statistic p-value Lower CI Upper CI
(0 - 1) -1.008e+00 1.969e-01 -2.267e+00 2.497e-01
(0 - 2) 7.705e+00 0.000e+00 6.447e+00 8.963e+00
(0 - 3) -3.572e-01 9.644e-01 -1.615e+00 9.009e-01
(0 - 4) 7.365e+00 0.000e+00 6.107e+00 8.623e+00
(0 - 5) 8.243e-02 1.000e+00 -1.176e+00 1.341e+00
(1 - 2) 8.714e+00 0.000e+00 7.456e+00 9.972e+00
(1 - 3) 6.512e-01 6.727e-01 -6.069e-01 1.909e+00
(1 - 4) 8.374e+00 0.000e+00 7.116e+00 9.632e+00
(1 - 5) 1.091e+00 1.308e-01 -1.672e-01 2.349e+00
(2 - 3) -8.062e+00 0.000e+00 -9.321e+00 -6.804e+00
(2 - 4) -3.400e-01 9.712e-01 -1.598e+00 9.181e-01
(2 - 5) -7.623e+00 0.000e+00 -8.881e+00 -6.365e+00
(3 - 4) 7.722e+00 0.000e+00 6.464e+00 8.981e+00
(3 - 5) 4.396e-01 9.162e-01 -8.185e-01 1.698e+00
(4 - 5) -7.283e+00 0.000e+00 -8.541e+00 -6.025e+00

Table 3.1: Example of full ANOVA and Tukey’s test applied to the
GP value of the six lesion groups (on the same data as Figure 3.21
and Figure 3.14 (right)).
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Figure 3.18: Distribution of the simulated equilibrium points for the
DRN area, which is affected by the pCPA lesion.

portance”.

In particular, for each individual of the population and for each parameter, we:

• Vary the parameter around its original value ±50% in 100 uniform steps:
if v is this parameter’s value for individual SSHAM

i , we produce the set
Vparam,i = {(2i+97

198
)v} ⊆ [0.5v, 1.5v], i = 1, ..., 100. We therefore have a

Vparam,i set for each parameter of each individual.

• Simulate the model using each value in Vparam,i and save the final value
for each brain area. If the simulation stops early (hence the simulation
diverged or reached physically impossible states), the result is discarded
and the parameter’s value removed from Vparam,i. For each parameter
and each individual we therefore obtain six sets, one for each brain area,
which we call Aarea

param,i

The sets are then joined across the population:

Aarea
param =

⋃
i

Aarea
param,i, Vparam =

⋃
i

Vparam,i (3.4.7)

where param ∈ SSHAM is one of the free parameters as defined in section 2.6.1,
area is one of the six brain areas {GP, StrD1, StrD2, SNc,DRN,LC}, and
i points to the i−th subject in the population.

A sensitivity index is then computed for each area by scaling both V and A by
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Figure 3.19: Distribution of the simulated equilibrium points for the
LC area, which is affected by the DSP4 lesion.

their respective median values and dividing the standard deviations:

Iparam,area =
std(Aarea

param/median(Aarea
param))

std(Vparam/median(Vparam))
(3.4.8)

Iparam,area can naturally be seen as a sensitivity matrix, with one column per
area and one row per free parameter.
As a last step, Iparam,area is normalized with respect to its maximum value.
Figure 3.23 shows the computed sensitivity matrix for the entire fitted popula-
tion in the SHAM case; a value of 1 indicates the maximum measured sensibility,
while a value of 0 would mean that a particular parameter has no effect on that
area. It is evident from the matrix that all the areas are relatively sensitive to
changes in noradrenalinergic balance (external activation of LC), and also to
changes in the serotonergic balance (external activation of DRN). It is therefore
reasonable to expect the stimulation of LC and/or DRN to produce changes in
the activation of all areas.
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Figure 3.20: Overview of the behaviour of every area in all six
groups, this time with the associated standard deviation and statis-
tical significance of each group with respect to SHAM as described
in section 3.4.1. 103



Figure 3.21: Results and predictions of the model (left) for the
GP area in all six groups, directly compared to the measurements
presented in [52] (right). Behaviour and statistical significance of
the simulated groups are compatible with the measurements.
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Figure 3.22: Relative sensitivity of each area with respect to every
parameter in healthy subjects.

Figure 3.23: Relative sensitivity of each area with respect to every
parameter in 6OHDA-induced parkinsonian subjects.

105



3.5 Possible road to a treatment?

Now that we have a model that reproduces available data, we can use it to
make predictions of what can be expected to happen in the cases which have
not been experimentally measured yet.

Comparing the brain areas activation levels distributions in the healthy SHAM
to the 6OHDA-induced parkinsonism (Figure 3.24 and Figure 3.25) it is evident
that the dopaminergic depletion also inhibits DRN and hence provokes a sta-
tistically significant serotonergic depletion. This behaviour is compatible with
serotonin measurements reported in [52]. The administration of 6OHDA also
inhibits the activation of LC (and hence noradrenaline production).
Once there is a state of parkinsonims due to a dopaminergic deficiency (in this
case, due to a lesion of the substantia nigra pars compacta, SNc, caused by
6OHDA), could the be restored by acting on the other monoaminic circuits?
According to the model schema in Figure 2.2, excluding the SNc area directly
affected by this drug, dopaminergic levels can potentially be altered in two ways:

1. Externally stimulate the locus ceruelus (LC) to change its production of
noradrenaline

2. Externally stimulate the dorsal raphe nucleus (DRN) change its production
of serotonine

The stimulation could either be chemical, by providing the area of the precursors
needed to generate monoamines, or electrical, to artificially alter the average
firing rate of the neurons from that area (and hence producing and projecting
more monoamines to the areas which receive projections from the stimulated
one).
According to the sensitivity matrix in Figure 3.23, although, it is reasonable to
expect LC stimulation to be strongly influential on dopamine levels, but DRN
stimulation should have a smaller effect on the activation of the SNc and strong
side effects instead, which would not be compatible with a successful treatment.

3.5.1 Treatment optimization

Whether the stimulation of LC, DRN or both could potentially restore healthy
levels of brain areas in parkinsonian subjects can be verified through the op-
timization of a subset of the parameters of our model. In particular, we can
try to optimize the external stimulation parameter of LC, DRN or both in the
6OHDA version of our subjects.

First of all, we need to extend a subject’s set of parameters Si, as previously
defined in section 2.6.1, with three new subsets of parameters, namely:
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Figure 3.24: Effects of the dopaminergic (parkinsonian) lesion to
SNc and LC induced by 6OHDA: SNc activation, and consequently
the production of dopamine, are drastically lowered compared to
the healthy (grey) levels. LC activity is also lowered to 80% of its
SHAM value.

name free parameters corresponding fitness measure

6OHDA+cLC αext
LC F cLC

6OHDA+cDRN αext
DRV F cDRN

6OHDA+cCOMB αext
LC,αext

DRV F cCOMB

As implied by the names, the corresponding model matrices A,C,b are con-
structed by using as base the 6OHDA (hence, parkinsonian) set of parameters
for a subject and leaves as the only free parameters the external stimulation of
the areas being tested.
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Figure 3.25: Effects of lesions on the dorsal raphe nucleus (DRN)
and locus coeruleus (LC). Lesions to the substantia nigra pars com-
pacta (SNc) by administering 6OHDA, which induces a parkinsonian
condition, have a significant effect on the average activation levels
of both DRN and LC.

The three populations need to have different fitness measures because they each
stimulate a different area to simulate the treatment; the stimulated area must
of course be ignored by the respective fitness measure.
Let us examine in detail the measure F cLC . Similarly to the composed fitness
measure previously described in section 2.6.2 for the base model, this measure
is defined as the composition (using (2.5.20) [p.62]) of the following measures:

• The mean square error of the areas activation value, one measure per
area, as defined for the SHAM case in (2.6.4) [p.68], but excluding the
area being stimulated (in this case, excluding LC).

• A parameter constraint similar to the one defined in (2.6.30) [p.71], but
this time used to enforce the external stimulus parameter to be equal or
greater than the original once (hence forcing the optimization to choose
a stimulation rather than an inhibition). In particular, the component is
defined as:

fPAR
cLC =

1

1 +max(0, SSHAM − ScLC)
. (3.5.1)

so that the fitness decreases if the area gets inhibited instead of stimu-
lated.

108



• An asymptotic stability constraint as defined in (2.6.32) [p.72], where of
course Ã is constructed using the current parameters subset S6OHDA+cLC .

The fitness measures F cDRN and F cCOMB are of course constructed in an
analogous way; in the latter case, mean square errors for both stimulated areas
are ignored in the measure.

The optimization is finally performed independently on all subjects of the three
groups using the same algorithm described in 2.6.4, including the outer opti-
mization cycles as described in section 3.1.1.

3.5.2 Treatment efficacy

Figure 3.26 shows that the optimizer could successfully restore healthy levels of
the measured areas in the vast majority of subjects by stimulating LC or both
LC and DRN, but it never succeeded by only stimulating DRN. It is also evident
that a small proportion of subjects (less than 10%) could not be successfully
treated in any of the cases; we will consider a fitness greater than 5 a success.
Figure 3.27 shows that in the combined treatment, which obtained very similar
results to the stimulation of LC alone, the relative increment to the external
stimulation parameter of DRN is in fact several orders of magnitude smaller
than the one applied to the corresponding parameter for LC; we can therefore
assume that while the combined stimulation may have resulted in a slightly
better fitness from the purely numerical perspective, DRN stimulation is indeed
not useful as a treatment also in combination to LC stimulation.
Figure 3.28 clearly show that a statistically significant stimulation of LC is able
to restore the healthy balance of serotonin and dopamine (the activation levels
of DRN and SNc respectively) in 6OHDA-induced parkinsonian subjects. Fig-
ure 3.29 and Figure 3.31 illustrate the changes of distributions in the parameters
space induced by the 6OHDA lesion and the subsequent treatment. The right
side of Figure 3.31 highlights the differences in parameter distributions between
the subjects that have been successfully treated (in green), and the ones whose
levels could not be successfully restored (in red). None of the parameters of
the curable subjects are significantly different from the one of the non-curable
ones; the only parameter that shows a small significance difference is the sen-
sitivity of SNc toward noradrenaline arriving from LC, as shown in Figure 3.30;
however the spread of the distribution of that parameter is very large, and the
value of that specific parameter alone is not useful for predicting if a subject is
curable or not. An accurate statistical study of the parameters space would be
necessary to determine if a particular combination of parameters could be used
for predicting the curability of a subject.
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Figure 3.26: Distribution of the fitness of SHAM, cLC, cDRN and
cCOMB after the optimization. It is evident that the optimizer
never reached a good fitness by only stimulating DRN, while it got
similar results when stimulating only LC or both areas.
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Figure 3.27: Relative increment applied by the optimizer to the
external stimulation parameter of LC and DRN in the combined
case. The increments to the DRN stimulation are several orders
of magnitude smaller than the ones applied to LC; moreover, as
shown in Figure 3.26 the sole stimulation of DRN is not a viable
treatment. The small changes applied to the DRN stimulation by
the optimizer may therefore have contributed to a numerically better
solution, which is however not substantially different from the one
obtain by the sole stimulation of LC. The subjects which did not
reach a fitness of 5 (and hence are not to be considered successfully
treated) have been excluded from this plot. The color scale gives
an indication of the final fitness reached by the optimizer, blue is
the lowest and yellow the highest.
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Figure 3.28: Lesion and treated values for all areas. A statistically
significant boost of LC average activity (and hence of noradrenaline
levels) can restore the activity (and hence monoamine production
levels) of all the areas that were significatively impacted by 6OHDA
to SHAM levels.
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Figure 3.29: Distribution comparison of model parameters, SHAM
subjects in black, 6OHDA (left) or treated (right) subjects in orange.
As defined in section 2.4.4, only the four parameters which affect the
SNc equation change in the 6OHDA case with respect to SHAM.
The treatment also modifies the external stimulation to LC and
DRN.

Figure 3.30: The only feature that differentiates, albeit with low
significance, individuals for which it was possible to find a treat-
ment stimulating either LC or DRN is the sensitivity of SNc to no-
radrenaline from LC. Figure 3.31 also shows the parameters-space
comparison of ’curable’ and ’non curable’ individuals for all param-
eters.
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Figure 3.31: Distribution comparison of model parameters in the
6OHDA subjects with respect to treated subjects (left). The treat-
ment modifies the external stimulation to LC and DRN, but is other-
wise identical to the 6OHDA case. (Figure 3.27 demonstrates that
in fact there is a very small shift in the DRN stimulus distribution
which is not appreciable in this plot.)
The right plot shows the distribution of parameters of treated sub-
jects which were successfully cured (green) and which did not reach
the desired fitness (red). The subject which did not respond to the
treatment happen to be the one whose SNc is not sensitive enough
to noradrenaline.
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3.6 Discussion

Parkison’s Disease affects approximately 10 million people worldwide [90]; we
are unfortunately still far from a definitive treatment (and even farther from a
cure); research on understanding the underlying phenomena and consequently
finding better treatments is still open on many fronts. One important aspect
of PD is the involvement of multiple brain circuits, with consequent alteration
in the brain neurochemestry [91; 92; 52; 90]. Investigating the relationship be-
tween these circuits and how the entire monoamine system reorganizes itself
during the development of the pathology is therefore one of the crucial chal-
lenges we are called to face.
In this work we proposed a bio-constrained differential equations system that
investigates brain regions behaviour after the depletion of serotonin, nora-
drenaline, or their combination in healthy and 6OHDA induced parkinsonism
model. The available data about the average firing rates of brain areas in all
depletion states was successfully reproduced by the model on a population of
virtual subjects with arbitrary precision, under the assumptions described in
section 2.4.1 using fitness measures and optimization strategies described thor-
oughly in section 2.6.
6-OHDA lesion alone is able to induce change in different brain regions activity:
the lesion is simulated by imposing a reduction in SNc and LC activities through
a simulated lesion of SNc only [93; 52]; this induced the model to simulate dis-
regulation of other basal regions, in particular DRN showed an increase of firing
activity, in accordance with literature [94; 95]. Moreover, the model predicts a
tendecy to reduction in striatal D1 activity and increase in striatal D2 activity,
which could be referred to the hypokinetc parkinsonian syndrome, that is the
result of dysregulation in the activity of the two populatons of medium spiny
neurons (MSNs). Dopamine D1 receptor-expressing MSNs (direct), become
hypoactive, whereas dopamine D2 receptor-expressing MSNs (indirect) become
hyperactive [96; 97; 98; 99], in fact DA activation of direct pathway and inhi-
bition of indirect pathway is necessary for correct motor output.
Also pCPA lesion alone is able to induce change in different brain regions activity:
this lesion, similarly to 6OHDA, is simulated by decreasing this time the activity
of the DRN, which also causes a decrease of firing rate in the GP according to
[52]. The model predicts an increase of SNc activity, which is in accordance
with the theory that serotonin could have an inhibitory effect on dopaminergic
neurons: in fact, administration of escitalopram (a selective serotonin reuptake
inhibitor) strongly decreased the firing rate of dopaminergic neurons in [100],
and serotonin-depleted rats show an incresed activity in dopaminergic neurons
[101]. Moreover, the model predicts an increase in LC activity which is also in
line with literature that suggest a tonic inhibition of LC noradrenergic neurons
by serotoninergic afferents [102; 103].
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Levodopa is the most common medication used in PD. However, this drug has
wide range of adverse effects, most notably motor fluctuations and dyskinesias
[104]. The discovery of alternative treatments that not only target dopaminergic
system but also noradrenergic or serotonergic systems is a big challenge of our
days. Following this path our result suggests that stimulating activity in LC is
enough to restore activity in the regions taken in exam. The stimulation of DRN
alone seems instead not to be effective, and also when carried out together with
LC stimulation it does not play a significant role in the restoration of the neural
circuit balance. This result is in line with the theories in which locus coeruleus
play a crucial role in development of PD, especially the non motor symptoms
at an early stage [105; 106]. It has been shown that restoration of the nora-
drenergic function using overexpression transcription (Phox2a/2b, DBH, TH)
factors directly in the LC can facilitate the recovery of dopaminergic systems
[107]. Moreover, there is evidence that in humans LC degeneration can occur
much earlier and even to greater extent than in the SN [108; 109; 110; 111].
Taken together these findings suggest that the possibility of acting on both
dopaminergic and noradrenergic systems could indeed be an effective strategy
for PD treatment in humans.

3.7 Conclusion

In this work we identified a dynamical system which is able to reproduce the
available data about one of the neural circuits classically involved in motor and
non-motor symptoms of Parkinson’s disease. The model offers a high level rep-
resentation of the neural circuit which is of course based on abstractions; the
model therefore does not claim correctness with respect to details but offers
a systemic view of the interaction trends at play in between the modelled ar-
eas. In particular, the assumed direct proportionality between an area’s average
activation frequency and its neurotransmitter output, as well as the constant
distribution ratios with respect to the projected areas, may be hiding more com-
plex behaviours which are likely to be happening in the real brain. Moreover,
the model only includes a small number of areas an does not account for cor-
tical regions (such as the prefrontal cortex and the motor cortex) and other
neurotransmitters that might be at play in the studied phenomena.
Despite the aforementioned limitations, the model is nevertheless able to repro-
duce many aspects of the modelled area’s behaviour which have been collected
across a broad range of recent scientific literature and its predictions seem to
be in accordance with the most recent studies, which results were not taken
into account during the optimization of the model; we therefore believe that
this model could indeed be useful to improve the current understanding of the
interactions between the modelled brain regions in normal and pathological con-
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ditions, and offers useful hints on the directions that should be looked towards
in the search for a better treatment.
In future work, the model could be expanded to extend its usefulness and con-
creteness. In particular, some of the abstractions could be concretized, for ex-
ample by dropping the direct activation-projection proportionality assumption
and explicitly representing in the model the individual neuromodulators concen-
trations at the projected points; additionally, the representation of each area
could be split to track the activity of the known different neural populations
which compose them.
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Appendix A

Additional figures and tables

Figure A.1: Boxplot and probability density of a normal distribution.
Values outside of the whiskers are usually represented with flares
(dots or circles). [112]
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Figure A.2: P-value relationship to F-value curve [113]

Figure A.3: Reference planes
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Figure A.4: Typical dendrite sizes [3]
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Appendix B

Source code

“Talk is cheap. Show me the code!”

Linus Torvalds

B.1 Implementation choices

The primary requirements for this implementation were flexibility and readabil-
ity; the code is therefore structured as a framework to make it as easy as
possible to implement and compare different versions of various models, each
with their specific structure, set of parameters and fitness functions. Flexibility
and readability could be compromised to obtain much faster implementations;
for example, the parameters could be represented in a more efficient way directly
as vectors or matrices instead of using dictionaries, and the most computation-
ally intensive hotspots could be re-implemented and optimized in a statically
typed language such as C and linked in this code as an external library. In this
particular context of fast prototyping readability is also extremely important for
manual validation of code conformity with specifications and debugging; given
the expected short-term lifespan of this code maintainability was not considered
an important factor, good engineering practices such as test-driven development
and automated testing were therefore not employed and instead we relied on
manual testing and validation. However, already with such a small codebase,
test and validation proved once again to be rather challenging tasks which ex-
plode in complexity with every little feature that is added to the software; it has
therefore once more proved true that “one should always employ good engineer-
ing practices, no matter how small the project seems to be” [114; 115; 116].
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B.2 Model classes

The model base class is implemented as an extension of a dictionary. A model
can therefore be accessed as a standard python dictionary to interact with data
structures that identify a particular model instance: its name, the dictionary
of parameters, the dictionary of target values, and so on. Common useful be-
haviours are added to copy a model (intended as a deep copy which effectively
duplicates all the data, so that different copies can be modified without unde-
sired side effects), save and load, print the state in a human-friendly fashion
and so on. A model also has an apply method which is intended to automat-
ically conform a set of parameters to the particular model. For example, one
can initialize a lesioned model with the parameters set of a healthy model, and
automatically apply the changes which keep the parameter values when neces-
sary, change the set of free parameters according to the lesion definition, change
the target values according to the lesion definition and so on. Furthermore, a
model is able to simulate itself in a given time range with a given starting point,
and compute its own fitness with respect to the given target values. Since un-
fortunately scipy’s implementation of the initial value problem integrator does
not provide a ’minimum step size’ or ’maximum number of iterations’ condition
for early stopping, it was necessary to implement a timeout approach to stop
simulations that would run for too long. A model can also optimize its own pa-
rameters to meet the required fitness; simpler models can be optimized quickly
with a local optimization algorithm such as the Nelder-Mead method, however
that usually does not converge on a global minimum with more complex mod-
els, therefore the default optimization method for a model is the differential
evolution algorithm, as previously described in section 2.6.4.
The base model class can then be subclassed to define model-specific proper-
ties: the dimensions of the problem, the set of free parameters, the differential
equations which define the dynamical behaviour, and the specific fitness mea-
sures. Complex models as used in this work, which combine different sets of
parameters, provide a standardized lesion_XXX method which returns the par-
ticular instance one needs. For instance, one can obtain the SHAM or 6OHDA
set of parameters of the same model, which represent the same individual in the
different states. The base model class provides an automatic mechanisms which
allows one to dynamically define the equations one by one and the system of
equation is then composed automatically using the ’equations’ attribute of the
model to keep the correct order. This has proved extremely useful to quickly
implement dramatically different systems, but despite having applied memoiza-
tion to avoid unnecessary dictionary accesses to parameters, this approach still
revealed itself to be a bottleneck to the simulation speed. Once the correct
form of the model was identified, therefore, this implementation also bypasses
that mechanism to instead provide a matrix formulation of the system, which
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through the use of the numpy library is delegated to a fast C library which
employs automatic vectorization and other harwdware-specific optimizations;
the latter implementation is therefore much faster, albeit less flexible and per-
haps, less easily human-readable. The individual definition of the equations is
anyway left in the model, and have been used to cross-validate the optimized
implementation.
1 import copy
2 import functools
3 import gc
4 import math
5 import pickle
6 import pprint
7 import time
8 from concurrent.futures import ProcessPoolExecutor
9

10 import numpy as np
11 import scipy
12 import scipy.optimize
13 import tqdm
14 from numpy import array as nparray, diagflat, linalg
15 from numpy.linalg import inv as invert_matrix
16 from scipy.integrate import solve_ivp
17 import signal
18

19 from plotting import *
20

21 np.random.seed(5)
22

23 # np.seterr(over='raise', divide='raise', invalid='raise', under='ignore')
24 # np.seterr(all='raise')
25

26 PARAMETERS_SEARCH_HISTORY_FILE_PATH = '/ramtmp/PSH'
27

28 nano = 1. # 10**-9
29 milli = 10 ** -3
30

31 from datetime import datetime
32

33 PLOT_OPTIMIZE = False
34 TIME_LIMIT_SECONDS = 60 * 60 * 12
35 IVP_TIME_LIMIT_SECONDS = 3
36

37

38 def sieve_pass_positive(x):
39 return np.maximum(0, x)
40

41

42 def sieve_pass_negative(x):
43 return np.minimum(0, x)
44

45

46 def sieve_pass_all(x):
47 return x
48

49

50 class TimeOutException(Exception):
51 pass
52

53

54 class Model(dict):
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55

56 def __init__(self):
57 self['name'] = 'Model'
58 self['equations'] = list()
59 self['parameters'] = dict()
60 self['parameters_constraints'] = dict()
61 self['constants'] = dict()
62 self['target'] = dict()
63 self['target_constraints'] = dict()
64 self['applied_lesions'] = list()
65 self['fitness_history'] = list()
66 self.save_parameters_search_history = False
67 self.default_min_param = 0
68 self.default_max_param = 1e5
69

70 def apply(self):
71 pass
72

73 def copy(self, keep_fitness_history=False):
74 fh = self.pop('fitness_history')
75 c = copy.deepcopy(self)
76 self['fitness_history'] = fh
77 if not keep_fitness_history:
78 c['fitness_history'] = list()
79 else:
80 c['fitness_history'] = copy.deepcopy(fh)
81 return c
82

83 def _impose_target(self, other):
84 other['target'] = copy.deepcopy(self['target'])
85 return other
86

87 def print(self):
88 m = self.copy()
89 m.pop('fitness_history')
90 pprint.pprint(m, sort_dicts=True, width=100)
91

92 def save(self, filename):
93 self['timestamp'] = datetime.now().isoformat()
94 with open(filename, 'bw') as f:
95 pickle.dump(self.copy(keep_fitness_history=True), f)
96

97 def _invalidate_caches(self):
98 for cp in ['P', 'parameters_and_constants', 'E', 'y_prime_functions']:
99 if cp in self.__dict__:

100 del self.__dict__[cp]
101

102 def _clean_constants(self):
103 for k in self['parameters'].keys():
104 try:
105 self['constants'].pop(k)
106 except KeyError:
107 pass
108

109 def __setitem__(self, key, value):
110 super(Model, self).__setitem__(key, value)
111 self._invalidate_caches()
112

113 @classmethod
114 def load(self, filename):
115 with open(filename, 'br') as f:
116 new = self()
117 new.update(pickle.load(f))
118 return new
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119

120 @functools.cached_property
121 def parameters_and_constants(self):
122 # parameters can overwrite constants!
123 return self['constants'] | self['parameters']
124

125 @functools.cached_property
126 def P(self):
127 """
128 combined dictionary with all constants and parameters
129 :return:
130 """
131 return self.parameters_and_constants
132

133 @functools.cached_property
134 def E(self):
135 """
136 equation index dictionary
137 :return:
138 """
139 return dict((k, i) for (i, k) in enumerate(self['equations']))
140

141 def with_constants_only(self):
142 self['constants'] = self.P
143 self['parameters'] = {}
144 self._clean_constants()
145 self._invalidate_caches()
146 return self
147

148 @functools.cached_property
149 def y_prime_functions(self):
150 return tuple(self.__getattribute__(f)() for f in self['equations'])
151

152 def y_prime(self, t, y):
153 return nparray([f(t, y) for f in self.y_prime_functions])
154

155 def simulate(self, y0: np.array, t0: float, T: float) -> dict:
156

157 def event_negative(t, y):
158 return min(y)
159

160 event_negative.terminal = True
161 event_negative.direction = 1
162

163 def event_too_large(t, y):
164 return max(y) - 100
165

166 event_negative.terminal = True
167 event_negative.direction = -1
168

169 def timeout_handler(num, stack):
170 raise TimeOutException()
171

172 signal.signal(signal.SIGALRM, timeout_handler)
173 signal.alarm(IVP_TIME_LIMIT_SECONDS)
174 try:
175 sim = solve_ivp(self.y_prime, (t0, T), y0,
176 method='BDF',
177 vectorized=True,
178 max_step=(T - t0) / 25,
179 events=[event_negative, event_too_large]
180 )
181 signal.alarm(0)
182 except TimeOutException:
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183 # The simulation is taking too long, it must be taking too small steps.
184 # Return a fake 'null' solution.
185 sim = {
186 't': np.zeros(25),
187 'y': np.zeros((len(self['equations']), 25))
188 }
189 signal.alarm(0)
190 return sim
191

192 def target_as_y0(self):
193 return np.array([self['target'][eq] if eq in self['target'] else 0.5 for eq in

self['equations']])↪→
194

195 def _fitness_simulation_mse(self, y0, t0, T, limit_to_equations=None,
196 simulation=None,
197 ignore_before_t=None,
198 sieve=sieve_pass_all):
199

200 # for e in limit_to_equations:
201 # if e not in self['equations']:
202 # raise Exception('WRONG limit_to_equation EQ %s!' % e)
203

204 if ignore_before_t is None:
205 ignore_before_t = t0
206

207 errors = list()
208

209 if not simulation:
210 res = self.simulate(y0, t0, T)
211 else:
212 res = simulation
213

214 solution = res['y']
215 time = res['t']
216

217 # Ignore the ignore_before_t if the simulation didn't go long enough, or if
there aren't enough values↪→

218 # after.
219 if time.max() <= ignore_before_t or (time >= ignore_before_t).sum() <= 3:
220 ignore_before_t = t0
221

222 solution = solution[:, time >= ignore_before_t]
223 time = time[time >= ignore_before_t]
224

225 t = time[1:]
226 dt = t - time[:-1]
227

228 for k, v in self['target'].items():
229 if limit_to_equations is None or (limit_to_equations is not None and k in

limit_to_equations):↪→
230 if not callable(v):
231 f = lambda t: np.ones(len(t)) * v
232 else:
233 f = v
234

235 e = sieve(np.array(solution[self.E[k]][1:] - f(t))) ** 2 * dt
236 errors.append(e)
237

238 errors = np.array(errors)
239

240 return errors.sum()
241

242 def _fitness_time_score(self, y0, t0, T, simulation=None, ignore_before_t=None):
243
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244 if not simulation:
245 simulation = self.simulate(y0, t0, T)
246

247 # 0 if no simulation, 1 if whole interval integrated (account for early
stopping)↪→

248 t = simulation['t']
249 if ignore_before_t:
250 t0 = ignore_before_t
251 if t[-1] < t0:
252 return 0
253 return ((t[-1] - t0) / (T - t0))
254

255 def _fitness_simulation(self, y0, t0, T, limit_to_equations=None, simulation=None,
ignore_before_t=None,↪→

256 sieve=sieve_pass_all):
257

258 if not simulation:
259 res = self.simulate(y0, t0, T)
260 else:
261 res = simulation
262

263 # if not res['success']:
264 # return 0
265

266 t = res['t']
267

268 mse = self._fitness_simulation_mse(y0, t0, T,
269 limit_to_equations=limit_to_equations,
270 simulation=res,
271 ignore_before_t=ignore_before_t,
272 sieve=sieve).flatten()
273

274 return float(self._fitness_time_score(y0, t0, T, res) / (1 + mse))
275

276 def fitness(self, y0, t0, T):
277 return self._fitness_simulation(y0, t0, T)
278

279 def new_mutated_target_model(self, scale=1.):
280 new_model = self.copy()
281

282 def mutate(v, check_constraints=(-np.inf, np.inf)):
283 # If we don't find an acceptable value after some trials, give up mutating

and keep what's there.↪→
284 for _ in range(100):
285 new_v = np.random.normal(loc=v, scale=scale * v)
286 if check_constraints[0] <= new_v <= check_constraints[1]:
287 return new_v
288 raise Exception("This should never really happen... (%s <= (%s, %s) <= %s)"

% (↪→
289 check_constraints[0], new_v, v, check_constraints[1]))
290 return v
291

292 for k, v in self['target'].items():
293 new_model['target'][k] = mutate(v, self['target_constraints'].get(k, (
294 self.default_min_param, self.default_max_param)))
295

296 new_model._invalidate_caches()
297 return new_model
298

299 def _optimize_get_state(self):
300 keys = sorted(self['parameters'].keys())
301 return [self['parameters'][k] for k in keys]
302

303 def _optimize_get_state_keys(self):

129



304 keys = sorted(self['parameters'].keys())
305 return keys
306

307 def _optimize_get_bounds(self):
308 keys = sorted(self['parameters'].keys())
309 bounds = [self['parameters_constraints'].get(k, (self.default_min_param,

self.default_max_param)) for k in keys]↪→
310 return scipy.optimize.Bounds(*zip(*bounds))
311

312 def _optimize_get_bounds_as_list(self):
313 keys = sorted(self['parameters'].keys())
314 bounds = [self['parameters_constraints'].get(k, (self.default_min_param,

self.default_max_param)) for k in keys]↪→
315 return bounds
316

317 def _optimize_set_state(self, state):
318 keys = sorted(self['parameters'].keys())
319 for i, k in enumerate(keys):
320 self['parameters'][k] = state[i]
321 self._invalidate_caches()
322

323 def optimize_local(self,
324 y0: np.array,
325 t0: float,
326 T: float,
327 N_JOBS=-1,
328 save_checkpoint_name=False):
329

330 fitness_history = list()
331

332 def error(x):
333 m = self.copy()
334 m._optimize_set_state(x)
335 fitness = m.fitness(y0, t0, T)
336 if self.save_parameters_search_history:
337 with open(PARAMETERS_SEARCH_HISTORY_FILE_PATH, 'ba') as f:
338 f.write(pickle.dumps((m.copy(), fitness)))
339 return (1. - fitness)
340

341 x0 = self._optimize_get_state()
342

343 with tqdm.tqdm() as progressbar:
344 def callback(x):
345 f = 1. - error(x)
346 if fitness_history:
347 conv = (f - fitness_history[-1][1])
348 else:
349 conv = 0
350 fitness_history.append((time.time(), f))
351 progressbar.update()
352 progressbar.set_postfix({'fitness': '%e (%s)' % (f, -np.log10(1 - f)),
353 'conv' : '%e' % conv, 'name': self['name']})
354

355 m = self.copy()
356 m._optimize_set_state(x)
357 m['fitness_history'] = fitness_history
358 if save_checkpoint_name:
359 m.save(save_checkpoint_name)
360

361 res = scipy.optimize.minimize(error, x0,
362 options={
363 'maxfev' : 1000000,
364 'maxiter' : 2000,
365 'adaptive': True,

130



366 'xatol' : 1e-6,
367 'fatol' : 1e-6,
368 },
369 callback=callback,
370 bounds=self._optimize_get_bounds(),
371 method='Nelder-Mead'
372 )
373

374 best = self.copy(keep_fitness_history=True)
375 best._optimize_set_state(res.x)
376 best['fitness_history'] += fitness_history
377 # best.print()
378 # print('Target ', str(np.array([self['target'][k] for k in

self['equations']])))↪→
379 print('Fitness ', best.fitness(y0, t0, T))
380 return best, fitness_history
381

382 def _optimize_global_error(self, x):
383 m = self.copy()
384 m._optimize_set_state(x)
385 fitness = m.fitness(self._og_y0, self._og_t0, self._og_T)
386 if self.save_parameters_search_history:
387 with open(PARAMETERS_SEARCH_HISTORY_FILE_PATH, 'ba') as f:
388 f.write(pickle.dumps((m.copy(), fitness)))
389 # del m
390 return (1 - fitness)
391

392 def optimize_global_DE(self,
393 y0: np.array,
394 t0: float,
395 T: float,
396 N_JOBS=-1,
397 save_checkpoint_name=False,
398 seed=1984,
399 popsize=2,
400 tol=1e-3):
401

402 self._og_y0 = y0
403 self._og_t0 = t0
404 self._og_T = T
405

406 x0 = self._optimize_get_state()
407

408 start_time = time.time()
409

410 fitness_history = self['fitness_history']
411 if not len(fitness_history):
412 fitness_history.append((start_time, 1. - self._optimize_global_error(x0)))
413

414 if PLOT_OPTIMIZE:
415 fig = plt.figure()
416 plt.ion()
417 plot_parameters([self], figure=fig)
418 plt.show()
419 plt.draw()
420 plt.pause(0.00001)
421

422 with tqdm.tqdm() as progressbar:
423 def callback(x, convergence=0):
424 f = 1. - self._optimize_global_error(x)
425

426 m = self.copy()
427 m._optimize_set_state(x)
428 m['fitness_history'] = fitness_history
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429 if save_checkpoint_name:
430 m.save(save_checkpoint_name)
431

432 if fitness_history:
433 conv = (f - fitness_history[-1][1])
434 else:
435 conv = 0
436

437 fitness_history.append((time.time(), f))
438 progressbar.update()
439 progressbar.set_postfix(
440 {'fitness' : '%e (%s)' % (f, -np.log10(1 - f)),
441 'alg_conv': '%e' % convergence,
442 'conv' : '%e' % conv,
443 'name' : self['name']})
444

445 if conv != 0 and PLOT_OPTIMIZE:
446 fig.clear()
447 plot_parameters([m], figure=fig)
448 plt.draw()
449 plt.pause(0.00001)
450

451 if time.time() - start_time > TIME_LIMIT_SECONDS:
452 return True
453

454 if f > 1 - 1e-8:
455 return True
456 else:
457 return False
458

459 # import ray
460 # from ray.util.multiprocessing import Pool as RayPool
461 # runtime_env = {"working_dir": "./"}
462 # ray.init(runtime_env=runtime_env)
463 # ray_remote_args = {"scheduling_strategy": "SPREAD", 'num_cpus': 1}
464 # MAP = RayPool(ray_remote_args=ray_remote_args).map
465

466 executor = ProcessPoolExecutor()
467 MAP = executor.map
468

469 res = scipy.optimize.differential_evolution(
470 func=self._optimize_global_error,
471 bounds=tuple(self._optimize_get_bounds_as_list()),
472 callback=callback,
473 x0=x0,
474 maxiter=100000,
475 strategy='best1exp',
476 workers=MAP,
477 updating='deferred',
478 polish=False,
479 mutation=0.95,
480 recombination=0.95,
481 init='halton',
482 popsize=popsize,
483 tol=tol,
484 seed=seed,
485 )
486

487 best = self.copy(keep_fitness_history=True)
488 best._optimize_set_state(res.x)
489 best['fitness_history'] = fitness_history
490 # best.print()
491 # print('Target ', str(np.array([self['target'][k] for k in

self['equations']])))↪→
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492 final_fitness = best.fitness(y0, t0, T)
493 print('Fitness ', final_fitness)
494 gc.collect() # When looping optimizations, if fast, gc may not run frequently

enough↪→
495 # print(res)
496 return best, fitness_history, final_fitness
497

498 def optimize(self,
499 y0: np.array,
500 t0: float,
501 T: float,
502 N_JOBS=-1,
503 save_checkpoint_name=False,
504 seed=False,
505 popsize=4,
506 tol=1e-3
507 ):
508

509 best = self
510

511 for i, seed in enumerate([42, 1984, 69, 2013, 126, 500, 86, 31, 71546, 978456]):
512

513 fresh_start = best.__class__()
514 fresh_start.apply()
515 best._optimize_set_state(fresh_start._optimize_get_state())
516

517 best, fitness_history, final_fitness = best.optimize_global_DE(
518 y0, t0, T, N_JOBS=N_JOBS,
519 save_checkpoint_name=save_checkpoint_name,
520 seed=seed,
521 popsize=popsize,
522 tol=tol)
523

524 if final_fitness >= 1 - 1e-8:
525 break
526

527 return best, fitness_history
528

529

530 class Healthy(Model):
531

532 def __init__(self):
533 super(Healthy, self).__init__()
534 self['name'] = 'S00'
535 self['equations'] = ['GP', 'StrD1', 'StrD2', 'SNc', 'DRN', 'LC']
536

537 self['parameters'] = {
538 }
539

540 self['constants'] = {
541 'a_GP_GP' : 18 * milli,
542 'a_EXT_GP' : 100., # 22 / (18 * milli),
543 'a_StrD1_GP' : 100.,
544 'a_StrD2_GP' : 100.,
545 'a_DRN_GP' : 100.,
546

547 'a_StrD1_StrD1': 2 * milli,
548 'a_EXT_StrD1' : 100., # 8 / (2 * milli),
549 'a_SNc_StrD1' : 100.,
550 'a_DRN_StrD1' : 100.,
551

552 'a_StrD2_StrD2': 2 * milli,
553 'a_EXT_StrD2' : 100., # 9 / (2 * milli),
554 'a_SNc_StrD2' : 100.,
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555 'a_DRN_StrD2' : 100.,
556

557 'a_SNc_SNc' : 1.5 * milli,
558 'a_EXT_SNc' : 100., # 4.5 / (1.5 * milli),
559 'b_LC_SNc' : 100,
560 'a_DRN_SNc' : 100.,
561 'a_LC_SNc' : 100.,
562

563 'a_DRN_DRN' : 3.3 * milli,
564 'a_EXT_DRN' : 100., # 1.2 / (3.3 * milli),
565 'a_SNc_DRN' : 100.,
566 'a_LC_DRN' : 100.,
567

568 'a_LC_LC' : 0.8 * milli,
569 'a_EXT_LC' : 100., # 2.5 / (0.8 * milli),
570 'a_DRN_LC' : 100.,
571 'a_SNc_LC' : 100.,
572

573 }
574

575 self['parameters_signs'] = {
576 'a_GP_GP' : -1,
577 'a_EXT_GP' : 1,
578 'a_StrD1_GP' : -1,
579 'a_StrD2_GP' : -1,
580 'a_DRN_GP' : 1,
581

582 'a_StrD1_StrD1': -1,
583 'a_EXT_StrD1' : 1,
584 'a_SNc_StrD1' : 1,
585 'a_DRN_StrD1' : 1,
586

587 'a_StrD2_StrD2': -1,
588 'a_EXT_StrD2' : 1,
589 'a_SNc_StrD2' : -1,
590 'a_DRN_StrD2' : 1,
591

592 'a_SNc_SNc' : -1,
593 'a_EXT_SNc' : 1,
594 'b_LC_SNc' : 1,
595 'a_DRN_SNc' : -1,
596 'a_LC_SNc' : -1,
597

598 'a_DRN_DRN' : -1,
599 'a_EXT_DRN' : 1,
600 'a_SNc_DRN' : -1,
601 'a_LC_DRN' : 1,
602

603 'a_LC_LC' : -1,
604 'a_EXT_LC' : 1,
605 'a_DRN_LC' : -1,
606 'a_SNc_LC' : 1,
607

608 }
609

610 self['parameters_constraints'] = {
611 # constraints are [self.default_min_param, self.default_max_param] by

default↪→
612 }
613

614 self['target'] = {
615 'GP' : 22, # Hz
616 'StrD1': 10, # Hz
617 'StrD2': 9, # Hz

134



618 'SNc' : 4.47, # Hz
619 'DRN' : 1.41, # Hz
620 'LC' : 2.3, # Hz
621 }
622

623 self['target_constraints'] = {
624 'GP' : [18, 26], # Hz
625 'StrD1': [8, 12], # Hz
626 'StrD2': [7, 11], # Hz
627 'SNc' : [3.5, 5.5], # Hz
628 'DRN' : [1, 2], # Hz
629 'LC' : [1.9, 3], # Hz
630 }
631

632 def apply(self):
633

634 if 'SHAM' not in self['applied_lesions']:
635 self['applied_lesions'].append('SHAM')
636 self['name'] += ' +SHAM'
637

638 self._invalidate_caches()
639 self['constants'] = self.P
640

641 self['parameters'] = {
642

643 'a_StrD1_GP' : self.P['a_StrD1_GP'],
644 'a_StrD2_GP' : self.P['a_StrD2_GP'],
645 'a_DRN_GP' : self.P['a_DRN_GP'],
646 'a_EXT_GP' : self.P['a_EXT_GP'],
647 #
648 'a_SNc_StrD1': self.P['a_SNc_StrD1'],
649 'a_DRN_StrD1': self.P['a_DRN_StrD1'],
650 'a_EXT_StrD1': self.P['a_EXT_StrD1'],
651 #
652 'a_SNc_StrD2': self.P['a_SNc_StrD2'],
653 'a_DRN_StrD2': self.P['a_DRN_StrD2'],
654 'a_EXT_StrD2': self.P['a_EXT_StrD2'],
655 #
656 'a_DRN_SNc' : self.P['a_DRN_SNc'],
657 'a_LC_SNc' : self.P['a_LC_SNc'],
658 'b_LC_SNc' : self.P['b_LC_SNc'],
659 'a_EXT_SNc' : self.P['a_EXT_SNc'],
660 #
661 'a_SNc_DRN' : self.P['a_SNc_DRN'],
662 'a_LC_DRN' : self.P['a_LC_DRN'],
663 'a_EXT_DRN' : self.P['a_EXT_DRN'],
664 #
665 'a_DRN_LC' : self.P['a_DRN_LC'],
666 'a_SNc_LC' : self.P['a_SNc_LC'],
667 'a_EXT_LC' : self.P['a_EXT_LC'],
668 }
669 self._clean_constants()
670 self['parameters_constraints'] = {
671 # constraints are [self.default_min_param, self.default_max_param] by

default↪→
672 }
673

674 def GP(self):
675 gp_idx = self.E['GP']
676 strd1_idx = self.E['StrD1']
677 strd2_idx = self.E['StrD2']
678 drn_idx = self.E['DRN']
679 T_GP = self.P['a_GP_GP']
680 a_StrD1_GP = self.P['a_StrD1_GP']
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681 a_StrD2_GP = self.P['a_StrD2_GP']
682 a_DRN_GP = self.P['a_DRN_GP']
683 a_EXT_GP = self.P['a_EXT_GP']
684

685 def _GP(t, y):
686 return -(1. / T_GP) * y[gp_idx] - a_StrD1_GP * y[strd1_idx] - a_StrD2_GP *

y[strd2_idx] + \↪→
687 a_DRN_GP * y[drn_idx] + a_EXT_GP
688

689 return _GP
690

691 def StrD1(self):
692 strd1_idx = self.E['StrD1']
693 drn_idx = self.E['DRN']
694 snc_idx = self.E['SNc']
695 t_strd1 = self.P['a_StrD1_StrD1']
696 a_drn_strd1 = self.P['a_DRN_StrD1']
697 a_snc_strd1 = self.P['a_SNc_StrD1']
698 a_ext_strd1 = self.P['a_EXT_StrD1']
699

700 def _StrD1(t, y):
701 return -(1. / t_strd1) * y[strd1_idx] + a_drn_strd1 * y[drn_idx] +

a_snc_strd1 * y[snc_idx] + a_ext_strd1↪→
702

703 return _StrD1
704

705 def StrD2(self):
706 strd2_idx = self.E['StrD2']
707 drn_idx = self.E['DRN']
708 snc_idx = self.E['SNc']
709 t_strd2 = self.P['a_StrD2_StrD2']
710 a_drn_strd2 = self.P['a_DRN_StrD2']
711 a_snc_strd2 = self.P['a_SNc_StrD2']
712 a_ext_strd2 = self.P['a_EXT_StrD2']
713

714 def _StrD2(t, y):
715 return -(1. / t_strd2) * y[strd2_idx] + a_drn_strd2 * y[drn_idx] -

a_snc_strd2 * y[snc_idx] + a_ext_strd2↪→
716

717 return _StrD2
718

719 def SNc(self):
720 snc_idx = self.E['SNc']
721 drn_idx = self.E['DRN']
722 lc_idx = self.E['LC']
723 t_snc = self.P['a_SNc_SNc']
724 a_drn_snc = self.P['a_DRN_SNc']
725 a_lc_snc = self.P['a_LC_SNc']
726 b_lc_snc = self.P['b_LC_SNc']
727 a_ext_snc = self.P['a_EXT_SNc']
728

729 def _SNc(t, y):
730 return - (1. / t_snc) * y[snc_idx] \
731 - a_drn_snc * y[drn_idx] - a_lc_snc * y[lc_idx] + (b_lc_snc * y[lc_idx]

** 2) + a_ext_snc↪→
732

733 return _SNc
734

735 def DRN(self):
736 drn_idx = self.E['DRN']
737 snc_idx = self.E['SNc']
738 lc_idx = self.E['LC']
739 t_drn = self.P['a_DRN_DRN']
740 a_snc_drn = self.P['a_SNc_DRN']
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741 a_lc_drn = self.P['a_LC_DRN']
742 a_ext_drn = self.P['a_EXT_DRN']
743

744 def _DRN(t, y):
745 return - (1. / t_drn) * y[drn_idx] + a_lc_drn * y[lc_idx] - a_snc_drn *

y[snc_idx] + a_ext_drn↪→
746

747 return _DRN
748

749 def LC(self):
750 lc_idx = self.E['LC']
751 drn_idx = self.E['DRN']
752 snc_idx = self.E['DRN']
753 t_lc = self.P['a_LC_LC']
754 a_drn_lc = self.P['a_DRN_LC']
755 a_snc_lc = self.P['a_SNc_LC']
756 a_ext_lc = self.P['a_EXT_LC']
757

758 def _LC(t, y):
759 return - (1. / t_lc) * y[lc_idx] - a_drn_lc * y[drn_idx] + a_snc_lc *

y[snc_idx] + a_ext_lc↪→
760

761 return _LC
762

763 def _invalidate_caches(self):
764 super(Healthy, self)._invalidate_caches()
765 if '_matrices' in self.__dict__:
766 del self.__dict__['_matrices']
767

768 @functools.cached_property
769 def _matrices(self):
770 eqs = self['equations']
771 signs = self['parameters_signs']
772 len_eqs = len(eqs)
773 A = np.zeros((len_eqs, len_eqs))
774 C = np.zeros((len_eqs, len_eqs))
775 b = np.zeros((len_eqs, 1))
776

777 equation_index = dict((e, i) for i, e in enumerate(eqs))
778 for n, v in self.P.items():
779 if n.startswith('a') or n.startswith('b'):
780 dest, eq_from, eq_to = n.split('_')
781 if dest == 'a':
782 if eq_from == eq_to:
783 v = 1 / v
784 if eq_from == 'EXT':
785 b[equation_index[eq_to]] = signs[n] * v
786 else:
787 A[equation_index[eq_to], equation_index[eq_from]] = signs[n] * v
788 elif dest == 'b':
789 C[equation_index[eq_to], equation_index[eq_from]] = signs[n] * v
790

791 return A, C, b
792

793 def y_prime(self, t, y):
794 A, C, b = self._matrices
795 return A.dot(y) + C.dot(y ** 2) + b
796

797 def _eigenvalues_real_part(self):
798 A, C, b = self._matrices
799 real_part_of_eigs = np.real(np.linalg.eig(A)[0])
800

801 def f(y):
802 return A.dot(y) + C.dot(y * y) + b
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803

804 def fprime(y):
805 return A + 2 * C.dot(diagflat(y))
806

807 eigsum = sum((max(0, e) for e in real_part_of_eigs))
808 if eigsum <= 0:
809 tol = 1e-9
810 y = -invert_matrix(A).dot(b)
811 itercount = 0
812 while itercount <= 25:
813 itercount += 1
814 y_last = y
815 y = y_last - invert_matrix(fprime(y_last)).dot(f(y_last))
816 if abs(y - y_last).max() <= tol:
817 break
818 if y.max() > 100 or y.min() < 0:
819 break
820

821 A_tilde = fprime(y)
822 real_part_of_eigs = np.real(np.linalg.eig(A_tilde)[0])
823

824 return real_part_of_eigs
825

826 def asymptotic_stability_score(self):
827 eigsum = sum((max(0, e) for e in self._eigenvalues_real_part()))
828 return 1. / (1 + eigsum)
829

830 def _split_fitness(self, y0, t0, T):
831 res = self.simulate(y0, t0, T)
832 fits = list()
833 for eq in self['equations']:
834 fits.append(self._fitness_simulation(y0, t0, T, simulation=res,
835 limit_to_equations=[eq],
836 ignore_before_t=None))
837 return fits
838

839 def _combine_split_fitnesses(self, fits):
840 # return np.min(fits)
841 # return np.average(fits)
842 # return min(fits) / np.average(fits)
843 return math.sqrt(min(fits) * np.average(fits))
844 # return np.prod(fits)**(1/len(fits))
845

846 def fitness(self, y0, t0, T):
847 return self._combine_split_fitnesses(self._split_fitness(y0, t0, T))
848

849

850 class L6OHDA(Healthy):
851

852 def __init__(self):
853 super(L6OHDA, self).__init__()
854

855 def apply(self):
856 if '6OHDA' not in self['applied_lesions']:
857 self['applied_lesions'].append('6OHDA')
858 self['name'] += ' +6OHDA'
859

860 # self['target']['GP'] *= 0.90
861 self['target']['SNc'] *= 0.1
862 self['target']['LC'] *= 0.8
863

864 self._invalidate_caches()
865 self['constants'] = self.P
866 self['parameters'] = {
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867 'b_LC_SNc' : self.P.get('b_LC_SNc', False) or 1.,
868 'a_LC_SNc' : self.P.get('a_LC_SNc', False) or 1.,
869 'a_DRN_SNc': self.P.get('a_DRN_SNc', False) or 1.,
870 'a_EXT_SNc': self.P.get('a_EXT_SNc', False) or 1.,
871 }
872 self['parameters_constraints']['b_LC_SNc'] = [0, self.default_max_param]
873 self['parameters_constraints']['a_EXT_SNc'] = (
874 self.default_min_param, self.P.get('a_EXT_SNc', False) or

self.default_max_param)↪→
875

876 self._clean_constants()
877

878 def _split_fitness(self, y0, t0, T):
879 res = self.simulate(y0, t0, T)
880

881 return [
882 self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
883 simulation=res,
884 ignore_before_t=(T - t0) / 2),
885 self._fitness_simulation(y0, t0, T, limit_to_equations=['SNc'],
886 simulation=res,
887 ignore_before_t=(T - t0) / 2,
888 sieve=sieve_pass_positive
889 ),
890 self._fitness_simulation(y0, t0, T, limit_to_equations=['LC'],
891 simulation=res,
892 ignore_before_t=(T - t0) / 2,
893 sieve=sieve_pass_positive
894 )
895

896 ]
897

898 def fitness(self, y0, t0, T):
899 return self._combine_split_fitnesses(self._split_fitness(y0, t0, T))
900

901

902 class LpCPA(Healthy):
903

904 def __init__(self):
905 super(LpCPA, self).__init__()
906

907 def apply(self):
908 if 'pCPA' not in self['applied_lesions']:
909 self['applied_lesions'].append('pCPA')
910 self['name'] += ' +pCPA'
911

912 self['target']['GP'] *= 0.65
913 self['target']['DRN'] *= 0.3
914

915 self._invalidate_caches()
916 self['constants'] = self.P
917 self['parameters'] = {
918 'a_EXT_DRN': self.P['a_EXT_DRN'],
919 'a_LC_DRN' : self.P['a_LC_DRN'],
920 'a_SNc_DRN': self.P['a_SNc_DRN'],
921 }
922 self['parameters_constraints']['a_EXT_DRN'] = (
923 self.default_min_param, self.P.get('a_EXT_DRN', False) or

self.default_max_param)↪→
924 self._clean_constants()
925

926 def _split_fitness(self, y0, t0, T):
927 res = self.simulate(y0, t0, T)
928
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929 return [
930 self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
931 simulation=res,
932 ignore_before_t=(T - t0) / 2),
933

934 self._fitness_simulation(y0, t0, T, limit_to_equations=['DRN'],
935 simulation=res,
936 ignore_before_t=(T - t0) / 2,
937 sieve=sieve_pass_positive),
938 ]
939

940 def fitness(self, y0, t0, T):
941 return self._combine_split_fitnesses(self._split_fitness(y0, t0, T))
942

943

944 class LDSP4(Healthy):
945

946 def __init__(self):
947 super(LDSP4, self).__init__()
948

949 def apply(self):
950 if 'DSP4' not in self['applied_lesions']:
951 self['applied_lesions'].append('DSP4')
952 self['name'] += ' +DSP4'
953

954 self['target']['LC'] *= 0.2
955

956 self._invalidate_caches()
957 self['constants'] = self.P
958 self['parameters'] = {
959 'a_EXT_LC': self.P['a_EXT_LC'],
960 'a_DRN_LC': self.P['a_DRN_LC']
961 }
962 self['parameters_constraints']['a_EXT_LC'] = (
963 self.default_min_param, self.P.get('a_EXT_LC', False) or

self.default_max_param)↪→
964 self._clean_constants()
965

966 def _split_fitness(self, y0, t0, T):
967 res = self.simulate(y0, t0, T)
968

969 return [
970 self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
971 simulation=res,
972 ignore_before_t=(T - t0) / 2),
973 self._fitness_simulation(y0, t0, T, limit_to_equations=['LC'],
974 simulation=res,
975 ignore_before_t=(T - t0) / 2,
976 sieve=sieve_pass_positive),
977 ]
978

979 def fitness(self, y0, t0, T):
980 return self._combine_split_fitnesses(self._split_fitness(y0, t0, T))
981

982

983 class L6OHDA_LDSP4(Healthy):
984

985 def __init__(self):
986 super(L6OHDA_LDSP4, self).__init__()
987

988 def apply(self):
989 if '6OHDA+DSP4' not in self['applied_lesions']:
990 self['applied_lesions'].append('6OHDA+DSP4')
991 self['name'] += ' +6OHDA+DSP4'
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992 self.original_GP = self['target']['GP']
993 self.max_GP = self.original_GP
994 self.min_GP = self.original_GP * 0.65
995

996 self._invalidate_caches()
997 self['constants'] = self.P
998 self['parameters'] = {}
999 self._clean_constants()

1000

1001 def _split_fitness(self, y0, t0, T):
1002 res = self.simulate(y0, t0, T)
1003

1004 time_score = self._fitness_time_score(y0, t0, T,
1005 simulation=res)
1006

1007 self['target']['GP'] = self.min_GP
1008 min_GP_score = self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
1009 simulation=res,
1010 ignore_before_t=(T - t0) / 2,
1011 sieve=sieve_pass_negative
1012 )
1013 self['target']['GP'] = self.max_GP
1014 max_GP_score = self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
1015 simulation=res,
1016 ignore_before_t=(T - t0) / 2,
1017 sieve=sieve_pass_positive
1018 )
1019 self['target']['GP'] = self.original_GP
1020

1021 return [
1022 time_score,
1023 min_GP_score,
1024 max_GP_score
1025 ]
1026

1027 def fitness(self, y0, t0, T):
1028 return self._combine_split_fitnesses(self._split_fitness(y0, t0, T))
1029

1030

1031 class L6OHDA_LpCPA(Healthy):
1032

1033 def __init__(self):
1034 super(L6OHDA_LpCPA, self).__init__()
1035

1036 def apply(self):
1037 if '6OHDA+pCPA' not in self['applied_lesions']:
1038 self['applied_lesions'].append('6OHDA+pCPA')
1039 self['name'] += ' +6OHDA+pCPA'
1040

1041 self.original_GP = self['target']['GP']
1042 self.max_GP = self.original_GP * 0.75
1043 self.min_GP = self.original_GP * 0.55
1044

1045 self._invalidate_caches()
1046 self['constants'] = self.P
1047 self['parameters'] = {}
1048 self._clean_constants()
1049

1050 def _split_fitness(self, y0, t0, T):
1051 res = self.simulate(y0, t0, T)
1052

1053 time_score = self._fitness_time_score(y0, t0, T,
1054 simulation=res)
1055

141



1056 self['target']['GP'] = self.min_GP
1057 min_GP_score = self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
1058 simulation=res,
1059 ignore_before_t=(T - t0) / 2,
1060 sieve=sieve_pass_negative
1061 )
1062 self['target']['GP'] = self.max_GP
1063 max_GP_score = self._fitness_simulation(y0, t0, T, limit_to_equations=['GP'],
1064 simulation=res,
1065 ignore_before_t=(T - t0) / 2,
1066 sieve=sieve_pass_positive
1067 )
1068 self['target']['GP'] = self.original_GP
1069

1070 return [
1071 time_score,
1072 min_GP_score,
1073 max_GP_score
1074 ]
1075

1076 def fitness(self, y0, t0, T):
1077 return self._combine_split_fitnesses(self._split_fitness(y0, t0, T))
1078

1079

1080 class Healthy_combined_fit(Healthy):
1081

1082 def __init__(self):
1083 super(Healthy_combined_fit, self).__init__()
1084

1085 def apply(self):
1086 self['parameters_constraints']['L6OHDA___b_LC_SNc'] = [0,

self.default_max_param]↪→
1087

1088 self._invalidate_caches()
1089 self['constants'] = self.P
1090

1091 # self['constants'].update(
1092 # {
1093 # }
1094 # )
1095

1096 self['parameters'] = {
1097

1098 'a_StrD1_GP' : self.P['a_StrD1_GP'],
1099 'a_StrD2_GP' : self.P['a_StrD2_GP'],
1100 'a_DRN_GP' : self.P['a_DRN_GP'],
1101 'a_EXT_GP' : self.P['a_EXT_GP'],
1102

1103 'a_SNc_StrD1' : self.P['a_SNc_StrD1'],
1104 'a_DRN_StrD1' : self.P['a_DRN_StrD1'],
1105 'a_EXT_StrD1' : self.P['a_EXT_StrD1'],
1106

1107 'a_SNc_StrD2' : self.P['a_SNc_StrD2'],
1108 'a_DRN_StrD2' : self.P['a_DRN_StrD2'],
1109 'a_EXT_StrD2' : self.P['a_EXT_StrD2'],
1110

1111 'a_DRN_SNc' : self.P['a_DRN_SNc'],
1112 'a_LC_SNc' : self.P['a_LC_SNc'],
1113 'b_LC_SNc' : self.P['b_LC_SNc'],
1114 'a_EXT_SNc' : self.P['a_EXT_SNc'],
1115

1116 'a_SNc_DRN' : self.P['a_SNc_DRN'],
1117 'a_LC_DRN' : self.P['a_LC_DRN'],
1118 'a_EXT_DRN' : self.P['a_EXT_DRN'],
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1119

1120 'a_DRN_LC' : self.P['a_DRN_LC'],
1121 'a_EXT_LC' : self.P['a_EXT_LC'],
1122 'a_SNc_LC' : self.P['a_SNc_LC'],
1123

1124 'L6OHDA___a_LC_SNc' : self.P.get('L6OHDA___a_LC_SNc', False) or
self.P['a_LC_SNc'],↪→

1125 'L6OHDA___b_LC_SNc' : self.P.get('L6OHDA___b_LC_SNc', False) or
self.P['b_LC_SNc'],↪→

1126 'L6OHDA___a_DRN_SNc': self.P.get('L6OHDA___a_DRN_SNc', False) or
self.P['a_DRN_SNc'],↪→

1127 'L6OHDA___a_EXT_SNc': self.P.get('L6OHDA___a_EXT_SNc', False) or
self.P['a_EXT_SNc'],↪→

1128

1129 'LpCPA___a_LC_DRN' : self.P.get('LpCPA___a_LC_DRN', False) or
self.P['a_LC_DRN'],↪→

1130 'LpCPA___a_SNc_DRN' : self.P.get('LpCPA___a_SNc_DRN', False) or
self.P['a_SNc_DRN'],↪→

1131 'LpCPA___a_EXT_DRN' : self.P.get('LpCPA___a_EXT_DRN', False) or
self.P['a_EXT_DRN'],↪→

1132

1133 'LDSP4___a_DRN_LC' : self.P.get('LDSP4___a_DRN_LC', False) or
self.P['a_DRN_LC'],↪→

1134 'LDSP4___a_EXT_LC' : self.P.get('LDSP4___a_EXT_LC', False) or
self.P['a_EXT_LC'],↪→

1135

1136 }
1137 self['parameters_constraints']['b_LC_SNc'] = [0, self.default_max_param]
1138

1139 self._clean_constants()
1140 self._invalidate_caches()
1141

1142 def lesion_SHAM(self):
1143 healthy = Healthy()
1144 healthy.update(self.copy())
1145 healthy.apply()
1146

1147 healthy._clean_constants()
1148 healthy._invalidate_caches()
1149 return healthy
1150

1151 def lesion_L6OHDA(self):
1152 l6ohda = L6OHDA()
1153 l6ohda.update(self.copy())
1154 l6ohda.apply()
1155 l6ohda['parameters']['a_LC_SNc'] = self.P['L6OHDA___a_LC_SNc']
1156 l6ohda['parameters']['b_LC_SNc'] = self.P['L6OHDA___b_LC_SNc']
1157 l6ohda['parameters']['a_DRN_SNc'] = self.P['L6OHDA___a_DRN_SNc']
1158 l6ohda['parameters']['a_EXT_SNc'] = self.P['L6OHDA___a_EXT_SNc']
1159

1160 l6ohda._clean_constants()
1161 l6ohda._invalidate_caches()
1162 return l6ohda
1163

1164 def lesion_LpCPA(self):
1165 lpcpa = LpCPA()
1166 lpcpa.update(self.copy())
1167 lpcpa.apply()
1168 lpcpa['parameters']['a_LC_DRN'] = self.P['LpCPA___a_LC_DRN']
1169 lpcpa['parameters']['a_SNc_DRN'] = self.P['LpCPA___a_SNc_DRN']
1170 lpcpa['parameters']['a_EXT_DRN'] = self.P['LpCPA___a_EXT_DRN']
1171

1172 lpcpa._clean_constants()
1173 lpcpa._invalidate_caches()
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1174 return lpcpa
1175

1176 def lesion_LDSP4(self):
1177 ldsp4 = LDSP4()
1178 ldsp4.update(self.copy())
1179 ldsp4.apply()
1180 ldsp4['parameters']['a_DRN_LC'] = self.P['LDSP4___a_DRN_LC']
1181 ldsp4['parameters']['a_EXT_LC'] = self.P['LDSP4___a_EXT_LC']
1182

1183 ldsp4._clean_constants()
1184 ldsp4._invalidate_caches()
1185 return ldsp4
1186

1187 def lesion_L6OHDA_LpCPA(self):
1188 lesioned = L6OHDA_LpCPA()
1189 lesioned.update(self.copy())
1190 lesioned.apply()
1191

1192 lesioned['constants'] = lesioned.P
1193 lesioned['parameters'] = dict()
1194

1195 lesioned['constants']['a_LC_SNc'] = self.P['L6OHDA___a_LC_SNc']
1196 lesioned['constants']['b_LC_SNc'] = self.P['L6OHDA___b_LC_SNc']
1197 lesioned['constants']['a_DRN_SNc'] = self.P['L6OHDA___a_DRN_SNc']
1198 lesioned['constants']['a_EXT_SNc'] = self.P['L6OHDA___a_EXT_SNc']
1199

1200 lesioned['constants']['a_LC_DRN'] = self.P['LpCPA___a_LC_DRN']
1201 lesioned['constants']['a_SNc_DRN'] = self.P['LpCPA___a_SNc_DRN']
1202 lesioned['constants']['a_EXT_DRN'] = self.P['LpCPA___a_EXT_DRN']
1203

1204 lesioned._clean_constants()
1205 lesioned._invalidate_caches()
1206

1207 return lesioned
1208

1209 def lesion_L6OHDA_LDSP4(self):
1210 lesioned = L6OHDA_LDSP4()
1211 lesioned.update(self.copy())
1212 lesioned.apply()
1213

1214 lesioned['constants'] = lesioned.P
1215 lesioned['parameters'] = dict()
1216

1217 lesioned['constants']['a_LC_SNc'] = self.P['L6OHDA___a_LC_SNc']
1218 lesioned['constants']['b_LC_SNc'] = self.P['L6OHDA___b_LC_SNc']
1219 lesioned['constants']['a_DRN_SNc'] = self.P['L6OHDA___a_DRN_SNc']
1220 lesioned['constants']['a_EXT_SNc'] = self.P['L6OHDA___a_EXT_SNc']
1221

1222 lesioned['constants']['a_DRN_LC'] = self.P['LDSP4___a_DRN_LC']
1223 lesioned['constants']['a_EXT_LC'] = self.P['LDSP4___a_EXT_LC']
1224

1225 lesioned._clean_constants()
1226 lesioned._invalidate_caches()
1227

1228 return lesioned
1229

1230 def _split_fitness_parameters_limits(self):
1231 # Lesioned EXT must be smaller than healthy EXT
1232 f_6OHDA = 1 / (1 + max(0, self.P['L6OHDA___a_EXT_SNc'] - self.P['a_EXT_SNc']))
1233 f_pCPA = 1 / (1 + max(0, self.P['LpCPA___a_EXT_DRN'] - self.P['a_EXT_DRN']))
1234 f_DSP4 = 1 / (1 + max(0, self.P['LDSP4___a_EXT_LC'] - self.P['a_EXT_LC']))
1235 return [f_6OHDA, f_pCPA, f_DSP4]
1236

1237 def fitness(self, y0, t0, T):
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1238 healthy = self.lesion_SHAM()
1239 l6ohda = self.lesion_L6OHDA()
1240 lpcpa = self.lesion_LpCPA()
1241 ldsp4 = self.lesion_LDSP4()
1242

1243 l6ohdapcpa = self.lesion_L6OHDA_LpCPA()
1244 l6ohdadsp4 = self.lesion_L6OHDA_LDSP4()
1245

1246 fits = \
1247 healthy._split_fitness(healthy.target_as_y0(), t0, T) + \
1248 l6ohda._split_fitness(healthy.target_as_y0(), t0, T) + \
1249 l6ohda._split_fitness(l6ohda.target_as_y0(), t0, T) + \
1250 lpcpa._split_fitness(healthy.target_as_y0(), t0, T) + \
1251 lpcpa._split_fitness(lpcpa.target_as_y0(), t0, T) + \
1252 ldsp4._split_fitness(healthy.target_as_y0(), t0, T) + \
1253 ldsp4._split_fitness(ldsp4.target_as_y0(), t0, T) + \
1254 l6ohdapcpa._split_fitness(healthy.target_as_y0(), t0, T) + \
1255 l6ohdapcpa._split_fitness(l6ohda.target_as_y0(), t0, T) + \
1256 l6ohdadsp4._split_fitness(healthy.target_as_y0(), t0, T) + \
1257 l6ohdadsp4._split_fitness(l6ohda.target_as_y0(), t0, T) + \
1258 [healthy.asymptotic_stability_score(),
1259 l6ohda.asymptotic_stability_score(),
1260 lpcpa.asymptotic_stability_score(),
1261 ldsp4.asymptotic_stability_score(),
1262 l6ohdapcpa.asymptotic_stability_score(),
1263 l6ohdadsp4.asymptotic_stability_score(),
1264 ] + \
1265 self._split_fitness_parameters_limits()
1266

1267 return self._combine_split_fitnesses(fits)
1268

1269

1270 class Cure(Healthy_combined_fit):
1271

1272 def apply(self):
1273 self._invalidate_caches()
1274 self['constants'] = self.P
1275 self['parameters'] = {}
1276 self._clean_constants()
1277 self._invalidate_caches()
1278 self._param_fitness_penalty = 1
1279

1280 def lesion_SHAM(self):
1281 lesioned = self.__class__()
1282 lesioned.update(self._impose_target(super(Cure, self).lesion_SHAM()))
1283 return lesioned
1284

1285 def lesion_L6OHDA(self):
1286 lesioned = self.__class__()
1287 lesioned.update(self._impose_target(super(Cure, self).lesion_L6OHDA()))
1288 return lesioned
1289

1290 def _split_fitness(self, y0, t0, T):
1291 res = self.simulate(y0, t0, T)
1292 fits = list()
1293 equations = self['equations']
1294 for eq in equations:
1295 fits.append(self._fitness_simulation(y0, t0, T, simulation=res,
1296 limit_to_equations=[eq],
1297 ignore_before_t=(T - t0) / 2))
1298 return fits
1299

1300 def fitness(self, y0, t0, T):
1301 return self._combine_split_fitnesses(
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1302 self._split_fitness(y0, t0, T) +
1303 [self.asymptotic_stability_score()]
1304 )
1305

1306

1307 class Cure_DRN(Cure):
1308

1309 def apply(self):
1310 super(Cure_DRN, self).apply()
1311

1312 if 'cure_DRN' not in self['applied_lesions']:
1313 self['applied_lesions'].append('cure_DRN')
1314 self['name'] += ' +cure_DRN'
1315

1316 self['parameters'] = {
1317 'CDRN___a_EXT_DRN': self.P.get('CDRN___a_EXT_DRN', False) or

self.P['a_EXT_DRN']↪→
1318 }
1319 self._clean_constants()
1320 self._invalidate_caches()
1321

1322 def cure_DRN(self):
1323 cure = Cure_DRN()
1324 cure.update(self.copy())
1325 cure.apply()
1326 cure['parameters']['a_EXT_DRN'] = self.P['CDRN___a_EXT_DRN']
1327 cure._clean_constants()
1328 cure._invalidate_caches()
1329 return cure
1330

1331 def _split_fitness_parameters_limits(self):
1332 f = 1 / (1 + self._param_fitness_penalty * max(0, self.P['a_EXT_DRN'] -

self.P['CDRN___a_EXT_DRN']))↪→
1333 return [f]
1334

1335 def _split_fitness(self, y0, t0, T):
1336 res = self.simulate(y0, t0, T)
1337 fits = list()
1338 equations = self['equations'].copy()
1339 # equations.pop(equations.index('SNc'))
1340 equations.pop(equations.index('DRN'))
1341 # equations.pop(equations.index('LC'))
1342 for eq in equations:
1343 fits.append(self._fitness_simulation(y0, t0, T, simulation=res,
1344 limit_to_equations=[eq],
1345 ignore_before_t=(T - t0) / 2))
1346 return fits + [self.asymptotic_stability_score()]
1347

1348 def fitness(self, y0, t0, T):
1349 limits = self._split_fitness_parameters_limits()
1350 cured = self.cure_DRN()
1351 return cured._combine_split_fitnesses(cured._split_fitness(y0, t0, T) + limits)
1352

1353

1354 class Cure_LC(Cure):
1355 def apply(self):
1356 super(Cure_LC, self).apply()
1357

1358 if 'cure_LC' not in self['applied_lesions']:
1359 self['applied_lesions'].append('cure_LC')
1360 self['name'] += ' +cure_LC'
1361

1362 self['parameters'] = {
1363 'CLC___a_EXT_LC': self.P.get('CLC___a_EXT_LC', False) or self.P['a_EXT_LC']
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1364 }
1365 self._clean_constants()
1366 self._invalidate_caches()
1367

1368 def cure_LC(self):
1369 cure = Cure_LC()
1370 cure.update(self.copy())
1371 cure.apply()
1372 cure['parameters']['a_EXT_LC'] = self.P['CLC___a_EXT_LC']
1373 cure._clean_constants()
1374 cure._invalidate_caches()
1375 return cure
1376

1377 def _split_fitness_parameters_limits(self):
1378 f = 1 / (1 + self._param_fitness_penalty * max(0, self.P['a_EXT_LC'] -

self.P['CLC___a_EXT_LC']))↪→
1379 return [f]
1380

1381 def _split_fitness(self, y0, t0, T):
1382 res = self.simulate(y0, t0, T)
1383 fits = list()
1384 equations = self['equations'].copy()
1385 # equations.pop(equations.index('SNc'))
1386 # equations.pop(equations.index('DRN'))
1387 equations.pop(equations.index('LC'))
1388 for eq in equations:
1389 fits.append(self._fitness_simulation(y0, t0, T, simulation=res,
1390 limit_to_equations=[eq],
1391 ignore_before_t=(T - t0) / 2))
1392 return fits + [self.asymptotic_stability_score()]
1393

1394 def fitness(self, y0, t0, T):
1395 limits = self._split_fitness_parameters_limits()
1396 cured = self.cure_LC()
1397 return cured._combine_split_fitnesses(cured._split_fitness(y0, t0, T) + limits)
1398

1399

1400 class Cure_combined(Cure):
1401 def apply(self):
1402 super(Cure_combined, self).apply()
1403

1404 if 'cure_DRN' not in self['applied_lesions']:
1405 self['applied_lesions'].append('cure_DRN')
1406 self['name'] += ' +cure_DRN'
1407 if 'cure_LC' not in self['applied_lesions']:
1408 self['applied_lesions'].append('cure_LC')
1409 self['name'] += ' +cure_LC'
1410

1411 self['parameters'] = {
1412 'CDRN___a_EXT_DRN': self.P.get('CDRN___a_EXT_DRN', False) or

self.P['a_EXT_DRN'],↪→
1413 'CLC___a_EXT_LC' : self.P.get('CLC___a_EXT_LC', False) or

self.P['a_EXT_LC']↪→
1414 }
1415 self._clean_constants()
1416 self._invalidate_caches()
1417

1418 def cure_DRN_LC(self):
1419 cure = Cure_combined()
1420 cure.update(self.copy())
1421 cure.apply()
1422 cure['parameters']['a_EXT_DRN'] = self.P['CDRN___a_EXT_DRN']
1423 cure['parameters']['a_EXT_LC'] = self.P['CLC___a_EXT_LC']
1424 cure._clean_constants()
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1425 cure._invalidate_caches()
1426 return cure
1427

1428 def _split_fitness_parameters_limits(self):
1429 fdrn = 1 / (1 + self._param_fitness_penalty * max(0, self.P['a_EXT_LC'] -

self.P['CLC___a_EXT_LC']))↪→
1430 flc = 1 / (1 + self._param_fitness_penalty * max(0, self.P['a_EXT_DRN'] -

self.P['CDRN___a_EXT_DRN']))↪→
1431 return [fdrn, flc]
1432

1433 def _split_fitness(self, y0, t0, T):
1434 res = self.simulate(y0, t0, T)
1435 fits = list()
1436 equations = self['equations'].copy()
1437 # equations.pop(equations.index('SNc'))
1438 equations.pop(equations.index('DRN'))
1439 equations.pop(equations.index('LC'))
1440 for eq in equations:
1441 fits.append(self._fitness_simulation(y0, t0, T, simulation=res,
1442 limit_to_equations=[eq],
1443 ignore_before_t=(T - t0) / 2))
1444 return fits
1445

1446 def fitness(self, y0, t0, T):
1447 limits = self._split_fitness_parameters_limits()
1448 cured = self.cure_DRN_LC()
1449 return cured._combine_split_fitnesses(
1450 cured._split_fitness(y0, t0, T) + \
1451 limits + \
1452 [self.asymptotic_stability_score()])

B.3 Plotting helpers
1 import random
2 from random import uniform as random_uniform
3

4 import numpy as np
5 import pandas as pd
6 import pyfiglet
7 from joblib import Parallel, delayed
8 from matplotlib import pyplot as plt
9 from scipy import stats

10

11 plt.rcParams['figure.figsize'] = (7, 7)
12 plt.rc('font', size=12)
13 SUBS = [1, 2, 3, 4, 5, 6, 7, 8, 9]
14 LINTHRESH = 10 ** -4
15

16

17 def pvalue_to_asterisks(pvalue):
18 if pvalue <= 0.0001:
19 return "****"
20 elif pvalue <= 0.001:
21 return "***"
22 elif pvalue <= 0.01:
23 return "**"
24 elif pvalue <= 0.05:
25 return "*"
26 return ""
27

28
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29 def print_title(msg, banner=None):
30 if banner:
31 pyfiglet.print_figlet(banner)
32 print(msg)
33

34

35 def plot_population(model, population, y0, t0, T, plot_target=True,
linthresh=LINTHRESH, max_models_in_plot=5):↪→

36 boxplot_figure = plt.figure()
37

38 boxplot_population_targets(population, linthresh=linthresh, figure=boxplot_figure)
39 boxplot_population_last_value(population, figure=boxplot_figure,

linthresh=linthresh, t0=t0, T=T)↪→
40

41 plot_figure = plt.figure()
42 plt.grid(which='both')
43

44 step = max(1, int(len(population) / max_models_in_plot))
45

46 for m in population[::step]:
47 plot_model(m, y0 or m.target_as_y0(), t0, T, figure=plot_figure,

plot_target=plot_target, linthresh=linthresh)↪→
48

49 return (boxplot_figure, plot_figure)
50

51

52 def plot_model(model, y0, t0, T, figure=None, plot_target=True, linthresh=LINTHRESH):
53 if figure:
54 plt.figure(figure)
55 else:
56 figure = plt.figure()
57 plt.grid(which='both')
58

59 solution = model.simulate(y0, t0, T)
60 cmap = plt.get_cmap('Paired')
61 # neqs = float(len(model['equations']))
62

63 for i, eq in enumerate(model['equations']):
64 plt.plot(solution['t'], solution['y'][i], color=cmap(i))
65

66 plt.legend(model['equations'])
67

68 if plot_target:
69 for i, eq in enumerate(model['equations']):
70 target = model['target'][eq]
71 if not callable(target):
72 f = lambda t: np.ones(len(solution['t'])) * target
73 else:
74 f = target
75 plt.plot(solution['t'], f(solution['t']), '--', color=cmap(i))
76 plt.title(''.join(model['name'].split(' ')[1:]) + ' T=%s' % T)
77 plt.xlabel('time (s)')
78 plt.ylabel('average frequency (Hz)')
79

80 if linthresh:
81 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
82 # plt.xscale('symlog', linthresh=linthresh)
83

84 return figure
85

86

87 def solutions_last_values(equations: list, solutions: list[dict]):
88 a = np.zeros((len(solutions), len(equations)))
89 for i, s in enumerate(solutions):
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90 a[i, :] = s['y'].transpose()[-1]
91 return a
92

93

94 def plot_parameters(models: list, t=0, figure=None, linthresh=LINTHRESH):
95 if figure:
96 plt.figure(figure)
97 else:
98 figure = plt.figure()
99 plt.grid(which='both')

100

101 colorsP = [x['color'] for x in plt.cycler(color=plt.cm.get_cmap('Set1').colors)]
102 colorsC = [x['color'] for x in plt.cycler(color=plt.cm.get_cmap('Accent').colors)]
103

104 for i, model in enumerate(models):
105 columns = sorted(list(model['constants'].keys()))
106 columns = [str(c) for c in columns]
107 values = [model['constants'][k] for k in columns]
108 values = [v(t) if callable(v) else v for v in values]
109 plt.plot(values, columns, 'o', label=model['name'] + ' Const', color=colorsC[i])
110

111 columns = sorted(list(model['parameters'].keys()))
112 columns = [str(c) for c in columns]
113 values = [model['parameters'][k] for k in columns]
114 values = [v(t) if callable(v) else v for v in values]
115 plt.plot(values, columns, 'v', label=model['name'] + ' Params',

color=colorsP[i])↪→
116

117 if linthresh:
118 plt.xscale('symlog', linthresh=linthresh, subs=SUBS)
119

120 if len(models) < 5:
121 plt.legend()
122

123 return figure
124

125

126 def boxplot_population_targets(population: list, figure=None, linthresh=LINTHRESH,
scatterplot=False, color='grey'):↪→

127 if figure:
128 plt.figure(figure)
129 else:
130 figure = plt.figure()
131 plt.grid(which='both')
132 equations = population[0]['equations']
133 targets = np.array([[m['target'][x] for m in population] for x in

equations]).transpose()↪→
134 targets_df = pd.DataFrame(columns=equations, data=targets)
135

136 if scatterplot:
137 targets_df.boxplot()
138 for i, col in enumerate(equations):
139 random.seed(1)
140 points = targets_df[col]
141 x = i + 1
142 width = 0.125
143 L = x - width
144 R = x + width
145 plt.plot([random_uniform(L, R) for _ in range(len(points))], points, 'o',

alpha=0.25, color='orange',↪→
146 zorder=0)
147 else:
148 targets_df.boxplot(color=color)
149
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150 if linthresh:
151 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
152 plt.title('%s Population target values' % ''.join(population[0]['name'].split('

')[1:]))↪→
153 plt.ylabel('average frequency (Hz)')
154 return figure
155

156

157 def boxplot_population_last_value(population: list, figure=None, linthresh=LINTHRESH,
t0=0, T=1):↪→

158 if figure:
159 plt.figure(figure)
160 else:
161 figure = plt.figure()
162 plt.grid(which='both')
163 equations = population[0]['equations']
164

165 data = Parallel(n_jobs=-1)(delayed(m.simulate)(m.target_as_y0(), t0, T) for m in
population)↪→

166

167 targets = [m['y'].transpose()[-1] for m in data if m['t'][-1] >= T]
168 if len(targets):
169 targets_df = pd.DataFrame(columns=equations, data=np.array(targets))
170 targets_df.boxplot()
171

172 for i, col in enumerate(equations):
173 random.seed(1)
174 points = targets_df[col]
175 x = i + 1
176 width = 0.125
177 L = x - width
178 R = x + width
179 plt.plot([random_uniform(L, R) for _ in range(len(points))], points, 'o',

alpha=0.25, color='orange',↪→
180 zorder=0)
181

182 missing_targets = [m['y'].transpose()[-1] for m in data if m['t'][-1] < T]
183 if len(missing_targets):
184 targets_df = pd.DataFrame(columns=equations, data=np.array(missing_targets))
185 targets_df.boxplot(color='orange', )
186

187 if linthresh:
188 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
189

190 plt.title('%s Values at T=%s (%s OK, %s NF)' % (
191 str(population[0]['name'].split(' ')[1:]), T, len(targets),

len(missing_targets)))↪→
192 plt.ylabel('average frequency (Hz)')
193 return figure
194

195

196 def extract_column(data, column):
197 pops = [list() for pop in data]
198 for pindex, pop in enumerate(data):
199 for ind in pop:
200 pops[pindex].append(ind[column])
201 df = pd.DataFrame(pops)
202 return df.T
203

204

205 def boxplot_populations_last_value_by_equation(populations: list[list],
linthresh=LINTHRESH, t0=0, T=1,↪→

206 title_postfix=''):
207 equations = populations[0][0]['equations']
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208 populations_names = [''.join(p[0]['name'].split(' ')[1:]) or 'SHAM' for p in
populations]↪→

209

210 figures = dict()
211

212 sim_data = [Parallel(n_jobs=-1)(delayed(m.simulate)(m.target_as_y0(), t0, T) for m
in p) for p in populations]↪→

213 data = [[m['y'].transpose()[-1] for m in pop if m['t'][-1] >= T] for pop in
sim_data]↪→

214

215 for idx, eq in enumerate(equations):
216 figure = plt.figure()
217 plt.grid(which='both')
218

219 df = extract_column(data, idx)
220 df.columns = populations_names
221 df = df.dropna()
222 df.boxplot()
223

224 for i, col in enumerate(populations_names):
225 random.seed(1)
226 points = df[col]
227 x = i + 1
228 width = 0.125
229 L = x - width
230 R = x + width
231 plt.plot([random_uniform(L, R) for _ in range(len(points))], points, 'o',

alpha=0.25, color='orange',↪→
232 zorder=0)
233

234 if linthresh:
235 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
236

237 ok_count = min([len(x) for x in data])
238 plt.title(eq + ' at T=%s ' % T + '($\geq$%s OK)' % ok_count + title_postfix)
239

240 plt.setp(figure.axes[0].get_xticklabels(), rotation=45,
horizontalalignment='right')↪→

241 plt.ylabel('average frequency (Hz)')
242 figures[str(eq)] = figure
243 return figures
244

245

246 def histplot_populations_last_value_by_equation(populations: list[list],
linthresh=LINTHRESH, t0=0, T=1,↪→

247 title_postfix=''):
248 equations = populations[0][0]['equations']
249 populations_names = [''.join(p[0]['name'].split(' ')[1:]) or 'SHAM' for p in

populations]↪→
250

251 figures = dict()
252

253 sim_data = [Parallel(n_jobs=-1)(delayed(m.simulate)(m.target_as_y0(), t0, T) for m
in p) for p in populations]↪→

254 data = [[m['y'].transpose()[-1] for m in pop if m['t'][-1] >= T] for pop in
sim_data]↪→

255

256 for idx, eq in enumerate(equations):
257 figure = plt.figure()
258 plt.grid(which='both')
259

260 df = extract_column(data, idx)
261 df.columns = populations_names
262 df = df.dropna()
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263

264 means = df.mean()
265 sem = df.sem()
266 means[np.isnan(means)] = 0
267 sem[np.isnan(sem)] = 0
268

269 stat = stats.tukey_hsd(*np.array(df).transpose())
270 annotations = [pvalue_to_asterisks(v) for v in stat.pvalue[0]]
271

272 container = plt.bar(means.index, means, yerr=sem, capsize=12, edgecolor='black',
273 color=plt.cm.binary(range(0, 128, int(128 /

len(equations))), alpha=0), zorder=2)↪→
274 plt.bar_label(container, annotations, size=18)
275

276 for idx, bar in enumerate(container):
277 random.seed(1)
278 x = bar.get_x()
279 width = bar.get_width() / 2.
280 L = x + width - width / 2
281 R = x + width + width / 2
282 points = df[populations_names[idx]]
283 plt.plot([random_uniform(L, R) for _ in range(len(points))], points, 'o',

alpha=0.25, color='orange',↪→
284 zorder=1)
285

286 if linthresh:
287 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
288

289 ok_count = min([len(x) for x in data])
290 plt.title(eq + ' at T=%s ' % T + ' ($\geq$%s OK) ' % ok_count + title_postfix)
291 plt.setp(figure.axes[0].get_xticklabels(), rotation=45,

horizontalalignment='right')↪→
292 plt.ylabel('average frequency (Hz)')
293 figures[str(eq)] = figure
294 return figures
295

296

297 def boxplot_population_parameters(population: list, linthresh=LINTHRESH, figure=None,
color=None, alt_title=None):↪→

298 if figure:
299 plt.figure(figure)
300 else:
301 figure = plt.figure()
302

303 plt.grid(which='both')
304 columns = population[0]._optimize_get_state_keys()
305 data = np.array([m._optimize_get_state() for m in population])
306 df = pd.DataFrame(columns=columns, data=data)
307 fp = {'markeredgecolor': color}
308

309 if data.sum() > 0:
310 df.boxplot(vert=True, color=color, rot=90, flierprops=fp, )
311 if linthresh:
312 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
313

314 if alt_title is None:
315 plt.title('%s Parameters distribution' % str(population[0]['name'].split('

')[1:]))↪→
316 else:
317 plt.title(alt_title)
318

319 return figure
320

321
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322 def histplot_population_parameters(populations: list[list], linthresh=LINTHRESH,
title_postfix=''):↪→

323 figures = dict()
324 columns = populations[0][0]._optimize_get_state_keys()
325 populations_names = [''.join(p[0]['name'].split(' ')[1:]) or 'SHAM' for p in

populations]↪→
326 for column in columns:
327 figure = plt.figure()
328 plt.grid(which='both')
329 data = [[x.P[column] for x in p] for p in populations]
330 df = pd.DataFrame(data)
331 df = df.transpose()
332 df.columns = populations_names
333 df = df.dropna()
334

335 means = df.mean()
336 sem = df.sem()
337 means[np.isnan(means)] = 0
338 sem[np.isnan(sem)] = 0
339

340 stat = stats.tukey_hsd(*np.array(df).transpose())
341 annotations = [pvalue_to_asterisks(v) for v in stat.pvalue[0]]
342

343 container = plt.bar(means.index, means, yerr=sem, capsize=12, edgecolor='black',
344 color=plt.cm.binary(range(0, 128, int(128 /

len(populations))), alpha=0), zorder=2)↪→
345 plt.bar_label(container, annotations, size=18)
346

347 for idx, bar in enumerate(container):
348 random.seed(1)
349 x = bar.get_x()
350 width = bar.get_width() / 2.
351 L = x + width - width / 2
352 R = x + width + width / 2
353 points = df[populations_names[idx]]
354 plt.plot([random_uniform(L, R) for _ in range(len(points))], points, 'o',

alpha=0.25, color='orange',↪→
355 zorder=1)
356

357 if linthresh:
358 plt.yscale('symlog', linthresh=linthresh, subs=SUBS)
359

360 ok_count = min([len(x) for x in data])
361 plt.title(column + ' ($\geq$%s OK) ' % ok_count + title_postfix)
362 plt.xticks(rotation='vertical')
363

364 figures[str(column)] = figure
365 return figures
366

367

368 def plot_max_eigenvalue_distribution(population: list, figure=None, title_label=''):
369 if figure:
370 plt.figure(figure)
371 else:
372 figure = plt.figure()
373 eigs = [e for pop in population for e in pop._eigenvalues_real_part()]
374

375 plt.grid(which='both')
376 plt.hist(eigs, bins=100) # , range=[0, 1])
377 plt.title('%sPopulation eigenvalues distribution (%s)' % (title_label,

str(len(population))))↪→
378 plt.ylabel('count')
379 plt.xlabel('$Re(\lambda)$')
380 plt.yscale('symlog')
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381 return figure
382

383

384 def plot_population_fitness_distribution(population: list, figure=None,
title_label=''):↪→

385 if figure:
386 plt.figure(figure)
387 else:
388 figure = plt.figure()
389

390 plt.grid(which='both')
391 fits = -np.log10(1 - np.array([i['fitness_history'][-1][1] for i in population]))
392 plt.hist(fits, bins=int((max(fits) + 2) * 10)) # , range=[0, 1])
393 plt.title('%sPopulation fitness distribution (%s)' % (title_label,

str(len(population))))↪→
394 plt.ylabel('count')
395 plt.xlabel('x')
396 return figure
397

398

399 def plot_population_fitness_delta_distribution(population: list, figure=None,
title_label=''):↪→

400 if figure:
401 plt.figure(figure)
402 else:
403 figure = plt.figure()
404

405 plt.grid(which='both')
406 fits = np.array([i['fitness_history'][-1][1] for i in population]) - np.array(
407 [i['fitness_history'][0][1] for i in population])
408 plt.hist(fits, bins=int((max(fits) + 2) * 10)) # , range=[0, 1])
409 plt.title('%sPopulation $\Delta$fitness distribution (%s)' % (title_label,

str(len(population))))↪→
410 plt.ylabel('count')
411 plt.ylabel('$\Delta$fitness')
412 return figure
413

414

415 def plot_population_fitness(population: list, figure=None, color='blue'):
416 if figure:
417 plt.figure(figure)
418 else:
419 figure = plt.figure()
420

421 fits = -np.log10(1 - np.array([i['fitness_history'][-1][1] for i in population]))
422 plt.barh([i['name'] for i in population], fits, color=color) # , range=[0, 1])
423 plt.setp(figure.axes[0].get_xticklabels(), rotation=90,

horizontalalignment='right')↪→
424 # plt.setp(figure.axes[0].get_yticklabels(), rotation=90,

horizontalalignment='right')↪→
425 plt.title('Population fitness by individual')
426 plt.grid(which='both')
427 return figure
428

429

430 def plot_fitness(fitness_history: list, model_name, figure=None, base='generations'):
431 if figure:
432 plt.figure(figure)
433 if len(figure.axes) < 2:
434 plt.twinx()
435 else:
436 figure = plt.figure()
437 plt.twinx()
438
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439 history = np.array(fitness_history).transpose()
440 if not len(history):
441 history = np.array([[0], [0]])
442

443 if base == 'generations':
444 x = list(range(len(history[0])))
445 else:
446 x = history[0]
447 x -= x[0]
448

449 plt.sca(figure.axes[0])
450 plt.plot(x, history[1], label='Fitness', color='blue')
451

452 plt.sca(figure.axes[1])
453 plt.plot(x, -np.log10(1 - history[1]), label='9s', color='red')
454 # plt.yscale('log', subs=SUBS,)
455 plt.grid(which='both')
456 plt.title(model_name + ' Fitness (blue) = $1-10^{-y}$ (red) ' + '[over ' + base +

']')↪→
457

458 return figure

B.4 Basic exploration of the ’standard’ sub-
ject

1 from CONF import POPULATION_BASE_PATH, SIMULATION_TIME
2 from models import *
3 from plotting import *
4

5 PLOT_DERIVATIVES = False
6 PLOT_LINTHRESH = False # 10 ** -4
7 BOXPLOT_LINTHRESH = 1e-4
8

9

10 def main(fit=True, plot=False):
11

12 checkpoint_filename = False # './HEALTHY_CHECKPOINT'
13 model = Healthy_combined_fit()
14 model.apply()
15 y0 = model.target_as_y0()
16 t0 = 0
17 T = SIMULATION_TIME
18

19 if fit:
20 model['name'] = 'S_000'
21 model, fitness_history = model.optimize(y0, t0, T,

save_checkpoint_name=checkpoint_filename)↪→
22 model.save(POPULATION_BASE_PATH + 'S_000')
23 else:
24 model = model.load(POPULATION_BASE_PATH + 'S_000')
25

26 if plot:
27 print_title("STEP 01: healthy fit on average target data", 'STEP 01')
28 plot_fitness(model['fitness_history'], model['name'], base='generations')
29 plot_fitness(model['fitness_history'], model['name'], base='time')
30 model.apply()
31 plot_parameters([model])
32 plot_model(model, model.target_as_y0(), t0, T,
33 linthresh=PLOT_LINTHRESH)
34
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35 lesions = [model.lesion_L6OHDA(), model.lesion_LDSP4(), model.lesion_LpCPA(),
36 model.lesion_L6OHDA_LDSP4(), model.lesion_L6OHDA_LpCPA()]
37

38 for model in lesions:
39 plot_parameters([model, model], linthresh=BOXPLOT_LINTHRESH)
40 plot_model(model, model.target_as_y0(), t0, T, linthresh=PLOT_LINTHRESH)
41

42 plt.show()
43

44

45 if __name__ == '__main__':
46 main(fit=True, plot=False)

B.5 Optimization and plots of the whole pop-
ulation

1 import math
2 import os
3

4 from CONF import FIG_DPI, SIMULATION_TIME, POPULATION_BASE_PATH
5 from models import *
6 from plotting import *
7

8 N_JOBS = 1
9 PLOT_LINTHRESH = False # 10 ** -4

10 BOXPLOT_LINTHRESH = 1e-3
11

12

13 def slice_populations(populations):
14 groups = len(populations)
15 size = len(populations[0])
16 per_group = math.floor(size / groups)
17 sliced = list()
18 for i, group in enumerate(populations):
19 sliced.append(group[i * per_group:(i + 1) * per_group])
20 return sliced
21

22

23 def main(fit=True, plot=False):
24 t0 = 0
25 T = SIMULATION_TIME
26 people_in_population = 240
27 mutation_scale = 0.5 / 4
28

29 if fit:
30 base = Healthy_combined_fit()
31 base['name'] = 'S_xxx'
32 np.random.seed(1984)
33 individuals = [base] + [base.new_mutated_target_model(scale=mutation_scale) for

i in↪→
34 range(people_in_population)]
35 for i, ind in enumerate(individuals):
36 ind['name'] = ind['name'].split('_')[0] + '_' + '%03i' % (i)
37 ind.apply()
38

39 for idx, ind in enumerate(individuals[::1]):
40 try:
41 ind = Healthy_combined_fit.load(POPULATION_BASE_PATH + '%s' %

ind['name'])↪→
42 individuals[idx] = ind
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43 except FileNotFoundError:
44 filename = POPULATION_BASE_PATH + '%s' % ind['name']
45 ind.apply()
46 ind = ind.optimize(ind.target_as_y0(), t0, T,

save_checkpoint_name=filename)[0]↪→
47 individuals[idx] = ind
48 ind.save(filename)
49

50 else:
51 files = sorted(filter(lambda x: x.startswith('S_'),

os.listdir(POPULATION_BASE_PATH + '')))↪→
52 individuals = [Healthy_combined_fit.load(POPULATION_BASE_PATH + '%s' % f) for f

in files]↪→
53 people_in_population = len(individuals)
54

55 if plot:
56 print_title("STEP 02: fitted population (%s) on target distribution with

mutation scale %s" %↪→
57 (people_in_population, mutation_scale), 'STEP 02')
58

59 figure = plt.figure()
60 plt.grid(which='both')
61 for i in individuals:
62 plot_fitness(i['fitness_history'], 'Combined', figure=figure,

base='generations')↪→
63 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_fitness_generations.png'), dpi=FIG_DPI,↪→
64 bbox_inches='tight')
65

66 figure = plt.figure()
67 plt.grid(which='both')
68 for i in individuals:
69 plot_fitness(i['fitness_history'], 'Combined', figure=figure, base='time')
70 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_fitness_time.png'), dpi=FIG_DPI,↪→
71 bbox_inches='tight')
72

73 figure = plot_population_fitness_distribution(individuals)
74 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_fitness_distribution.png'), dpi=FIG_DPI,↪→
75 bbox_inches='tight')
76

77 figure = boxplot_population_targets(individuals, linthresh=False,
scatterplot=True)↪→

78 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_targets_before_fit.png'), dpi=FIG_DPI,↪→

79 bbox_inches='tight')
80

81 TP = [i.lesion_L6OHDA() for i in individuals]
82 figure = boxplot_population_targets(TP, linthresh=False, color='red')
83 TP = [i.lesion_LpCPA() for i in individuals]
84 figure = boxplot_population_targets(TP, figure=figure, linthresh=False,

color='orange')↪→
85 TP = [i.lesion_LDSP4() for i in individuals]
86 figure = boxplot_population_targets(TP, figure=figure, linthresh=False,

color='blue')↪→
87 figure = boxplot_population_targets(individuals, figure=figure,

linthresh=False, color='black')↪→
88 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_targets_before_fit_lesions.png'), dpi=FIG_DPI,↪→
89 bbox_inches='tight')
90

91 reject_threshold = 1 - 2e-8
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92 rejects = [ind for ind in individuals if ind['fitness_history'][-1][1] <=
reject_threshold]↪→

93 individuals = [ind for ind in individuals if ind['fitness_history'][-1][1] >
reject_threshold]↪→

94

95 figure = plt.figure()
96 plt.grid(which='both')
97 # plot_population_fitness(individuals, figure=figure, color='blue')
98 plot_population_fitness(rejects, figure=figure, color='red')
99

100 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_fitness_individual.png'), dpi=FIG_DPI,↪→

101 bbox_inches='tight')
102

103 figure = boxplot_population_parameters(individuals,
linthresh=BOXPLOT_LINTHRESH)↪→

104 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_parameters_distribution.png'), dpi=FIG_DPI,↪→

105 bbox_inches='tight')
106

107 populations = list()
108 for kind in ['lesion_SHAM', 'lesion_L6OHDA', 'lesion_LpCPA', 'lesion_LDSP4',
109 'lesion_L6OHDA_LpCPA',
110 'lesion_L6OHDA_LDSP4']:
111 # Healthy
112 current_individuals = [i.__getattribute__(kind)() for i in individuals]
113 populations.append(current_individuals)
114 boxplot_population_parameters(current_individuals,

linthresh=BOXPLOT_LINTHRESH)↪→
115 (boxplot, plot) = plot_population(individuals[0], current_individuals,

None, t0, T,↪→
116 linthresh=PLOT_LINTHRESH, plot_target=False)
117 boxplot.savefig(os.path.join(POPULATION_BASE_PATH,

'population_target_%s.png' % kind), dpi=FIG_DPI,↪→
118 bbox_inches='tight')
119

120 stability_plot = plot_max_eigenvalue_distribution(
121 current_individuals,
122 title_label=str(current_individuals[0]['name'].split(' ')[
123 1:]) + ' ')
124 stability_plot.savefig(os.path.join(POPULATION_BASE_PATH,

'population_max_eigenvalues_%s.png' % kind),↪→
125 dpi=FIG_DPI,
126 bbox_inches='tight')
127

128 sliced_populations = slice_populations(populations)
129 sliced_populations_desc = ' ' + str([len(x) for x in sliced_populations])
130

131 figures_dict = boxplot_populations_last_value_by_equation(populations,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

132 title_postfix=' whole
population')↪→

133 for eq_name, figure in figures_dict.items():
134 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_by_equation_%s.png' % eq_name), dpi=FIG_DPI,↪→
135 bbox_inches='tight')
136

137 figures_dict = boxplot_populations_last_value_by_equation(sliced_populations,
linthresh=PLOT_LINTHRESH, t0=t0,↪→

138 T=T,
title_postfix=sliced_populations_desc)↪→

139 for eq_name, figure in figures_dict.items():
140 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_by_equation_%s_sliced.png' % eq_name),↪→
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141 dpi=FIG_DPI,
142 bbox_inches='tight')
143

144 figures_dict = histplot_populations_last_value_by_equation(populations,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

145 title_postfix=' whole
population')↪→

146 for eq_name, figure in figures_dict.items():
147 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_by_equation_hist_%s.png' % eq_name),↪→
148 dpi=FIG_DPI,
149 bbox_inches='tight')
150

151 figures_dict = histplot_populations_last_value_by_equation(sliced_populations,
linthresh=PLOT_LINTHRESH, t0=t0,↪→

152 T=T,
title_postfix=sliced_populations_desc)↪→

153 for eq_name, figure in figures_dict.items():
154 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_by_equation_hist_%s_sliced.png' % eq_name),↪→
155 dpi=FIG_DPI,
156 bbox_inches='tight')
157

158 # Additional stuff generated for documentation
159

160 # GP plots for comparison
161 DSP4_pop = [populations[0], populations[1], populations[3], populations[5]]
162

163 figures_dict = histplot_populations_last_value_by_equation(DSP4_pop,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

164 title_postfix=' whole
population')↪→

165 figures_dict['GP'].savefig(os.path.join(POPULATION_BASE_PATH,
'population_by_equation_hist_DSP4_GP.png'),↪→

166 dpi=FIG_DPI,
167 bbox_inches='tight')
168 PCPA_pop = [populations[0], populations[1], populations[2], populations[4]]
169

170 figures_dict = histplot_populations_last_value_by_equation(PCPA_pop,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

171 title_postfix=' whole
population')↪→

172 figures_dict['GP'].savefig(os.path.join(POPULATION_BASE_PATH,
'population_by_equation_hist_PCPA_GP.png'),↪→

173 dpi=FIG_DPI,
174 bbox_inches='tight')
175

176 DSP4_pop = [sliced_populations[0], sliced_populations[1],
sliced_populations[3], sliced_populations[5]]↪→

177

178 figures_dict = histplot_populations_last_value_by_equation(DSP4_pop,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

179 title_postfix=' ' +
str([len(x) for
x in
DSP4_pop]))

↪→
↪→
↪→

180 figures_dict['GP'].savefig(os.path.join(POPULATION_BASE_PATH,
'population_by_equation_hist_DSP4_GP_sliced.png'),↪→

181 dpi=FIG_DPI,
182 bbox_inches='tight')
183 PCPA_pop = [sliced_populations[0], sliced_populations[1],

sliced_populations[2], sliced_populations[4]]↪→
184
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185 figures_dict = histplot_populations_last_value_by_equation(PCPA_pop,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

186 title_postfix=' ' +
str([len(x) for
x in
DSP4_pop]))

↪→
↪→
↪→

187 figures_dict['GP'].savefig(os.path.join(POPULATION_BASE_PATH,
'population_by_equation_hist_PCPA_GP_sliced.png'),↪→

188 dpi=FIG_DPI,
189 bbox_inches='tight')
190

191 # STATS
192

193 with open(os.path.join(POPULATION_BASE_PATH, 'stats_individuals'), 'w') as f:
194 f.write(str(len(individuals)))
195 with open(os.path.join(POPULATION_BASE_PATH, 'stats_rejects'), 'w') as f:
196 f.write(str(len(rejects)))
197 with open(os.path.join(POPULATION_BASE_PATH, 'stats_population'), 'w') as f:
198 f.write(str(len(rejects) + len(individuals)))
199

200 average_generations = np.average([len(i['fitness_history']) for i in
individuals])↪→

201 with open(os.path.join(POPULATION_BASE_PATH, 'stats_average_generations'), 'w')
as f:↪→

202 f.write(str(int(average_generations)))
203 average_time = np.average([i['fitness_history'][-1][0] -

i['fitness_history'][0][0] for i in individuals])↪→
204 with open(os.path.join(POPULATION_BASE_PATH, 'stats_average_time'), 'w') as f:
205 f.write('%.2f' % (average_time / 3600.))
206

207 figure = plt.figure()
208 plt.grid(which='both')
209 for i in individuals[::int(len(individuals) / 10)]:
210 plot_fitness(i['fitness_history'], 'Combined', figure=figure,

base='generations')↪→
211 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_fitness_generations_subsample.png'), dpi=FIG_DPI,↪→
212 bbox_inches='tight')
213

214 figure = plt.figure()
215 plt.grid(which='both')
216 for i in individuals[::int(len(individuals) / 10)]:
217 plot_fitness(i['fitness_history'], 'Combined', figure=figure, base='time')
218 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_fitness_time_subsample.png'), dpi=FIG_DPI,↪→
219 bbox_inches='tight')
220

221 # Transient plots
222 m = individuals[5]
223

224 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
225 mL6OHDA = m.lesion_L6OHDA()
226 mL6OHDA['target'] = m['target']
227 figure = plot_model(mL6OHDA, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
228 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'transient_example_L6OHDA.png'), dpi=FIG_DPI,↪→
229 bbox_inches='tight')
230

231 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
232 mLpCPA = m.lesion_LpCPA()
233 mLpCPA['target'] = m['target']
234 figure = plot_model(mLpCPA, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
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235 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'transient_example_LpCPA.png'), dpi=FIG_DPI,↪→

236 bbox_inches='tight')
237

238 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
239 mDSP4 = m.lesion_LDSP4()
240 mDSP4['target'] = m['target']
241 figure = plot_model(mDSP4, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
242 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'transient_example_LDSP4.png'), dpi=FIG_DPI,↪→
243 bbox_inches='tight')
244

245 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
246 m6OHDA = m.lesion_L6OHDA()
247 m6OHDA['target'] = m['target']
248 figure = plot_model(m6OHDA, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
249 y0 = m.lesion_L6OHDA().simulate(m.target_as_y0(), 0, 0.1)['y'].transpose()[-1]
250 m6OHDALDSP4 = m.lesion_L6OHDA_LDSP4()
251 m6OHDALDSP4['target'] = m['target']
252 figure = plot_model(m6OHDALDSP4, y0, 0.2, 0.3, figure=figure, linthresh=False)
253 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'transient_example_6OHDA+DSP4.png'), dpi=FIG_DPI,↪→
254 bbox_inches='tight')
255

256 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
257 m6OHDA = m.lesion_L6OHDA()
258 m6OHDA['target'] = m['target']
259 figure = plot_model(m6OHDA, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
260 y0 = m.lesion_L6OHDA().simulate(m.target_as_y0(), 0, 0.1)['y'].transpose()[-1]
261 m6OHDALpCPA = m.lesion_L6OHDA_LpCPA()
262 m6OHDALpCPA['target'] = m['target']
263 figure = plot_model(m6OHDALpCPA, y0, 0.2, 0.3, figure=figure, linthresh=False)
264 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'transient_example_6OHDA+LpCPA.png'), dpi=FIG_DPI,↪→
265 bbox_inches='tight')
266

267 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
268 mLpCPA = m.lesion_L6OHDA_LpCPA()
269 mLpCPA['target'] = m['target']
270 figure = plot_model(mLpCPA, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
271 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'transient_example_direct_6OHDA+LpCPA.png'), dpi=FIG_DPI,↪→
272 bbox_inches='tight')
273

274 figure = plot_model(m, m.target_as_y0(), 0, 0.1, figure=None, linthresh=False)
275 mDSP4 = m.lesion_L6OHDA_LDSP4()
276 mDSP4['target'] = m['target']
277 figure = plot_model(mDSP4, m.target_as_y0(), 0.1, 0.2, figure=figure,

linthresh=False)↪→
278 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'transient_example_direct_6OHDA+LDSP4.png'), dpi=FIG_DPI,↪→
279 bbox_inches='tight')
280

281 figures_dict = histplot_population_parameters(populations, title_postfix='
whole population', linthresh=False)↪→

282 for param, figure in figures_dict.items():
283 figure.savefig(os.path.join(POPULATION_BASE_PATH,
284 'populations_by_parameter_%s.png' % (param)),
285 dpi=FIG_DPI,
286 bbox_inches='tight')
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287 figures_dict = histplot_population_parameters(sliced_populations,
title_postfix=sliced_populations_desc,↪→

288 linthresh=False)
289 for param, figure in figures_dict.items():
290 figure.savefig(os.path.join(POPULATION_BASE_PATH,
291 'populations_by_parameter_%s_sliced.png' %

(param)),↪→
292 dpi=FIG_DPI,
293 bbox_inches='tight')
294

295

296 if __name__ == '__main__':
297 main(fit=True, plot=False)

B.6 Parameter sensitivity analysis
1 import os
2 from collections import defaultdict
3

4 import matplotlib.cm as cm
5 import seaborn as sns
6 from matplotlib.colors import Normalize
7

8 from CONF import *
9 from models import *

10 from plotting import *
11

12 plt.rcParams['figure.figsize'] = (7, 7)
13

14 N_JOBS = -1
15

16 PLOT_LINTHRESH = False # 1e-4
17 BOXPLOT_LINTHRESH = False # 1e-4
18

19

20 def mutation_state(model, mutation_scale, mutations_number, parameter_index, y0, t0,
T, label='N/A'):↪→

21 model_state = model._optimize_get_state()
22 value = model_state[parameter_index]
23 value_range = np.linspace(value * (1 - mutation_scale), value * (1 +

mutation_scale), mutations_number)↪→
24 targets = list()
25 for v in value_range:
26 mutated_model = model.copy()
27 new_state = model_state.copy()
28 new_state[parameter_index] = v
29 mutated_model._optimize_set_state(new_state)
30 res = mutated_model.simulate(y0, 0, T)
31 targets.append([v, res['y'].transpose()[-1], res['t'][-1]])
32 return label, targets
33

34

35 def main(fit=True, plot=False):
36 files = sorted(filter(lambda x: x.startswith('S_'),

os.listdir(POPULATION_BASE_PATH + '')))↪→
37 individuals = [Healthy_combined_fit.load(POPULATION_BASE_PATH + '%s' % f) for f in

files]↪→
38 reject_threshold = 1 - 2e-8
39 individuals = [ind.lesion_SHAM() for ind in individuals if

ind['fitness_history'][-1][1] > reject_threshold]↪→
40
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41 t0 = 0
42 T = SIMULATION_TIME
43 T_mutation = T
44

45 mutation_scale = 0.5
46 mutations = 100
47 mutations_plot_one_every = 1
48

49 available_params = individuals[0]._optimize_get_state_keys()
50

51 if fit:
52

53 states = defaultdict(list)
54 for model in individuals:
55 res = model.simulate(model.target_as_y0(), 0, T)
56 states['HEALTHY'] += [[0, res['y'].transpose()[-1], res['t'][-1]]]
57

58 mutation_states = Parallel(n_jobs=N_JOBS)(delayed(mutation_state)(model,
59 mutation_scale,
60 mutations,
61 parameter_index,
62 model.target_as_y0(),
63 t0,
64 T_mutation,
65 parameter_name) for
66 parameter_index, parameter_name in

enumerate(available_params)↪→
67 for model in individuals)
68

69 with open('./fitted_models/S_000_SENSITIVITY_STATES', 'bw') as f:
70 pickle.dump(mutation_states, f)
71

72 for parameter, results in mutation_states:
73 states[parameter] += results
74

75 for key, val in states.items():
76 states[key] = sorted(val, key=lambda x: x[0])
77

78 with open('./fitted_models/S_000_SENSITIVITY_STATES', 'bw') as f:
79 pickle.dump(states, f)
80 else:
81

82 with open('./fitted_models/S_000_SENSITIVITY_STATES', 'br') as f:
83 states = pickle.load(f)
84

85 if plot:
86 print_title("STEP 03: parameter sensitivity analysis", 'STEP 03')
87 model = Healthy_combined_fit().lesion_SHAM()
88

89 healthy_reference = None
90

91 for param, data in list(states.items()):
92 continue
93

94 figure = plt.figure()
95

96 values = np.array([x[0] for x in data])
97 states_data = np.array([x[1] for x in data])
98 end_times = np.array([x[2] for x in data])
99

100 color_normalizer = Normalize(vmin=min(values), vmax=max(values))
101 color_map = cm.ScalarMappable(norm=color_normalizer, cmap=cm.spring)
102 colors = [color_map.to_rgba(x) for x in values]
103
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104 df = pd.DataFrame(columns=model["equations"], data=states_data)
105

106 if param == 'HEALTHY':
107 healthy_reference = df
108 df.boxplot(color='red')
109 elif healthy_reference is not None:
110 healthy_reference.boxplot(color='red')
111 df.boxplot(color='green')
112

113 for i, c in enumerate(df.columns):
114 y = df[c]
115 plt.scatter([i + 1] * len(y), y, alpha=0.3, s=25, c=colors) # , c=y,

s=10)↪→
116 for n in range(len(y)):
117 if end_times[n] < T:
118 plt.scatter([i + 1], y[n], alpha=1, s=200, c='red', marker='x')

# , c=y, s=10)↪→
119

120 if PLOT_LINTHRESH:
121 plt.yscale('symlog', linthresh=PLOT_LINTHRESH, subs=[1, 2, 3, 4, 5, 6,

7, 8, 9])↪→
122 plt.title(str(param) + ' %s - %s' % (min(values), max(values)))
123

124 # Sensitivity matrix
125 no_param_states = states.pop('HEALTHY')
126

127 sensitivity_matrix = np.zeros(shape=(len(states.keys()),
len(no_param_states[0][1])))↪→

128

129 for i, (param, results) in enumerate(states.items()):
130 values, good_results = list(zip(*[(x[0], x[1]) for x in results if x[2] >=

T]))↪→
131 values = pd.DataFrame(values)
132 good_results = pd.DataFrame(good_results)
133 G = (good_results / good_results.median()).std()
134 V = (values / values.median()).std()
135 sensitivity_index = G / float(V)
136 sensitivity_matrix[i] = sensitivity_index
137 sensitivity_matrix /= sensitivity_matrix.max()
138 sensitivity_df = pd.DataFrame(sensitivity_matrix, columns=model['equations'],

index=states.keys())↪→
139

140 figure = plt.figure()
141 sns.heatmap(sensitivity_df, annot=True, cmap='YlOrBr')
142 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'sensitivity_analysis_matrix.png'), dpi=FIG_DPI,↪→
143 bbox_inches='tight')
144

145

146 if __name__ == '__main__':
147 main(fit=True, plot=False)

B.7 Optimization of candidate treatments
1 from CONF import FIG_DPI, SIMULATION_TIME, POPULATION_BASE_PATH
2 from models import *
3 from plotting import *
4 from s02_population import slice_populations
5 import os
6

7 PLOT_DERIVATIVES = False
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8 PLOT_LINTHRESH = False # 10 ** -4
9 BOXPLOT_LINTHRESH = 1e-3

10

11 BL = {'lesion_SHAM' : '+SHAM',
12 'lesion_L6OHDA' : '+6OHDA',
13 'lesion_LpCPA' : '+pCPA',
14 'lesion_LDSP4' : '+DSP4',
15 'lesion_L6OHDA_LpCPA': '+6OHDA+pCPA',
16 'lesion_L6OHDA_LDSP4': '+6OHDA+DSP4'}
17

18 POPULATION_BASE_PATH___CURE_DRN = os.path.join(POPULATION_BASE_PATH, 'CURE_DRN')
19 POPULATION_BASE_PATH___CURE_LC = os.path.join(POPULATION_BASE_PATH, 'CURE_LC')
20 POPULATION_BASE_PATH___CURE_COMBINED = os.path.join(POPULATION_BASE_PATH,

'CURE_DRN_LC')↪→
21

22 if not os.path.exists(POPULATION_BASE_PATH___CURE_DRN):
23 os.mkdir(POPULATION_BASE_PATH___CURE_DRN)
24 if not os.path.exists(POPULATION_BASE_PATH___CURE_LC):
25 os.mkdir(POPULATION_BASE_PATH___CURE_LC)
26 if not os.path.exists(POPULATION_BASE_PATH___CURE_COMBINED):
27 os.mkdir(POPULATION_BASE_PATH___CURE_COMBINED)
28

29

30 def is_already_optimized(filename):
31 try:
32 Healthy_combined_fit.load(filename)
33 return True
34 except:
35 return False
36

37 def main(fit=True, plot=False):
38 t0 = 0
39 T = SIMULATION_TIME
40 if fit:
41 files = sorted(filter(lambda x: x.startswith('S_'),

os.listdir(POPULATION_BASE_PATH + '')))↪→
42 individuals = [Healthy_combined_fit.load(POPULATION_BASE_PATH + '%s' % f) for f

in files]↪→
43 reject_threshold = 1 - 2e-8
44 individuals = [ind for ind in individuals if ind['fitness_history'][-1][1] >

reject_threshold]↪→
45 individuals_6OHDA = [ind._impose_target(ind.lesion_L6OHDA()) for ind in

individuals]↪→
46

47 individuals_cure_DRN = list()
48 individuals_cure_LC = list()
49 individuals_cure_combined = list()
50

51 for i in individuals_6OHDA:
52 cure_individual = Cure_DRN()
53 cure_individual.update(i.copy(keep_fitness_history=False))
54 cure_individual.apply()
55 individuals_cure_DRN.append(cure_individual)
56

57 cure_individual = Cure_LC()
58 cure_individual.update(i.copy(keep_fitness_history=False))
59 cure_individual.apply()
60 individuals_cure_LC.append(cure_individual)
61

62 cure_individual = Cure_combined()
63 cure_individual.update(i.copy(keep_fitness_history=False))
64 cure_individual.apply()
65 individuals_cure_combined.append(cure_individual)
66
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67 optimizer_popsize = 60
68 tol = 1e-6
69 for idx, individual in enumerate(individuals_cure_DRN):
70 individual.apply()
71 filename = (POPULATION_BASE_PATH___CURE_DRN + '/%s' %

individual['name']).replace(' ', '_')↪→
72 if not is_already_optimized(filename):
73 fitted_individual = \
74 individual.optimize(individual.target_as_y0(), t0, T, seed=1,

popsize=optimizer_popsize, tol=tol)[0]↪→
75 fh = fitted_individual['fitness_history']
76 fitted_individual['fitness_history'] = fh
77 fitted_individual.save(filename)
78 individuals_cure_DRN[idx] = fitted_individual
79

80 for idx, individual in enumerate(individuals_cure_LC):
81 individual.apply()
82 filename = (POPULATION_BASE_PATH___CURE_LC + '/%s' %

individual['name']).replace(' ', '_')↪→
83 if not is_already_optimized(filename):
84 fitted_individual = \
85 individual.optimize(individual.target_as_y0(), t0, T, seed=1,

popsize=optimizer_popsize, tol=tol)[0]↪→
86 fh = fitted_individual['fitness_history']
87 fitted_individual['fitness_history'] = fh
88 fitted_individual.save(filename)
89 individuals_cure_LC[idx] = fitted_individual
90

91 for idx, individual in enumerate(individuals_cure_combined):
92 individual.apply()
93 filename = (POPULATION_BASE_PATH___CURE_COMBINED + '/%s' %

individual['name']).replace(' ', '_')↪→
94 if not is_already_optimized(filename):
95 fitted_individual = \
96 individual.optimize(individual.target_as_y0(), t0, T, seed=1,

popsize=int(optimizer_popsize / 2),↪→
97 tol=tol)[0]
98 fh = fitted_individual['fitness_history']
99 fitted_individual['fitness_history'] = fh

100 fitted_individual.save(filename)
101 individuals_cure_combined[idx] = fitted_individual
102

103

104 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH + '')))↪→

105 individuals = [Healthy_combined_fit.load(POPULATION_BASE_PATH + '%s' % f) for f in
files]↪→

106 reject_threshold = 1 - 2e-8
107 individuals = [ind for ind in individuals if ind['fitness_history'][-1][1] >

reject_threshold]↪→
108 individuals_6OHDA = [ind._impose_target(ind.lesion_L6OHDA()) for ind in

individuals]↪→
109

110 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH___CURE_DRN + '')))↪→

111 individuals_cure_DRN = [Cure_DRN.load(POPULATION_BASE_PATH___CURE_DRN + '/%s' % f)
for f in files]↪→

112 for i in individuals_cure_DRN:
113 i.apply()
114

115 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH___CURE_LC + '')))↪→

116 individuals_cure_LC = [Cure_LC.load(POPULATION_BASE_PATH___CURE_LC + '/%s' % f) for
f in files]↪→
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117 for i in individuals_cure_LC:
118 i.apply()
119

120 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH___CURE_COMBINED + '')))↪→

121 individuals_cure_combined =
[Cure_combined.load(POPULATION_BASE_PATH___CURE_COMBINED + '/%s' % f) for f in↪→

122 files]
123 for i in individuals_cure_combined:
124 i.apply()
125

126 if plot:
127 print_title("STEP 04: treatment", 'STEP 04')
128

129 # FITNESS DISTRIBUTIONS
130 figure = plot_population_fitness_distribution(individuals, title_label='SHAM ')
131 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_cure_fitness_distribution.png'), dpi=FIG_DPI,↪→
132 bbox_inches='tight')
133

134 figure = plot_population_fitness_distribution(individuals_cure_DRN,
title_label='cure_DRN ')↪→

135 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_cure_DRN_fitness_distribution.png'), dpi=FIG_DPI,↪→

136 bbox_inches='tight')
137

138 figure = plot_population_fitness_distribution(individuals_cure_LC,
title_label='cure_LC ')↪→

139 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_cure_LC_fitness_distribution.png'), dpi=FIG_DPI,↪→

140 bbox_inches='tight')
141

142 figure = plot_population_fitness_distribution(individuals_cure_combined,
title_label='cure_combined ')↪→

143 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_cure_combined_fitness_distribution.png'),↪→

144 dpi=FIG_DPI,
145 bbox_inches='tight')
146

147 # DELTA FITNESS
148 figure = plot_population_fitness_delta_distribution(individuals,

title_label='SHAM ')↪→
149 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_cure_fitness_delta_distribution.png'),↪→
150 dpi=FIG_DPI,
151 bbox_inches='tight')
152

153 figure = plot_population_fitness_delta_distribution(individuals_cure_DRN,
title_label='cure_DRN ')↪→

154 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_cure_DRN_fitness_delta_distribution.png'),↪→

155 dpi=FIG_DPI,
156 bbox_inches='tight')
157

158 figure = plot_population_fitness_delta_distribution(individuals_cure_LC,
title_label='cure_LC ')↪→

159 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_cure_LC_fitness_delta_distribution.png'),↪→

160 dpi=FIG_DPI,
161 bbox_inches='tight')
162

163 figure = plot_population_fitness_delta_distribution(individuals_cure_combined,
title_label='cure_combined ')↪→
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164 figure.savefig(os.path.join(POPULATION_BASE_PATH,
'population_cure_combined_fitness_delta_distribution.png'),↪→

165 dpi=FIG_DPI,
166 bbox_inches='tight')
167

168 # STABILITY
169 stability_plot = plot_max_eigenvalue_distribution(individuals,

title_label='SHAM ')↪→
170 stability_plot.savefig(os.path.join(POPULATION_BASE_PATH,

'cure_population_max_eigenvalues_%s.png' % "SHAM"),↪→
171 dpi=FIG_DPI,
172 bbox_inches='tight')
173

174 stability_plot = plot_max_eigenvalue_distribution(individuals_cure_DRN,
title_label='cure_DRN ')↪→

175 stability_plot.savefig(
176 os.path.join(POPULATION_BASE_PATH,

'cure_population_max_eigenvalues_%s.png' % "cure_DRN"),↪→
177 dpi=FIG_DPI,
178 bbox_inches='tight')
179

180 stability_plot = plot_max_eigenvalue_distribution(individuals_cure_LC,
title_label='cure_LC ')↪→

181 stability_plot.savefig(os.path.join(POPULATION_BASE_PATH,
'cure_population_max_eigenvalues_%s.png' % "cure_LC"),↪→

182 dpi=FIG_DPI,
183 bbox_inches='tight')
184

185 stability_plot = plot_max_eigenvalue_distribution(individuals_cure_combined,
title_label='cure_combined ')↪→

186 stability_plot.savefig(
187 os.path.join(POPULATION_BASE_PATH,

'cure_population_max_eigenvalues_%s.png' % "cure_combined"),↪→
188 dpi=FIG_DPI,
189 bbox_inches='tight')
190

191 # PARAMETERS
192 figure = boxplot_population_parameters(individuals,

linthresh=BOXPLOT_LINTHRESH)↪→
193 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_cure_sham_parameters_distribution.png'),↪→
194 dpi=FIG_DPI,
195 bbox_inches='tight')
196

197 for i in individuals_cure_DRN:
198 i['parameters']['a_EXT_DRN'] = i.P['a_EXT_DRN']
199 figure = boxplot_population_parameters(individuals_cure_DRN,

linthresh=BOXPLOT_LINTHRESH)↪→
200 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_cure_DRN_parameters_distribution.png'),↪→
201 dpi=FIG_DPI,
202 bbox_inches='tight')
203

204 for i in individuals_cure_LC:
205 i['parameters']['a_EXT_LC'] = i.P['a_EXT_LC']
206 figure = boxplot_population_parameters(individuals_cure_LC,

linthresh=BOXPLOT_LINTHRESH)↪→
207 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_cure_LC_parameters_distribution.png'),↪→
208 dpi=FIG_DPI,
209 bbox_inches='tight')
210

211 for i in individuals_cure_combined:
212 i['parameters']['a_EXT_DRN'] = i.P['a_EXT_DRN']
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213 i['parameters']['a_EXT_LC'] = i.P['a_EXT_LC']
214 figure = boxplot_population_parameters(individuals_cure_combined,

linthresh=BOXPLOT_LINTHRESH)↪→
215 figure.savefig(os.path.join(POPULATION_BASE_PATH,

'population_cure_combined_parameters_distribution.png'),↪→
216 dpi=FIG_DPI,
217 bbox_inches='tight')
218

219 populations = [individuals, individuals_6OHDA,
220 [i.cure_DRN() for i in individuals_cure_DRN],
221 [i.cure_LC() for i in individuals_cure_LC],
222 [i.cure_DRN_LC() for i in individuals_cure_combined],
223 ]
224

225 sliced_populations = slice_populations(populations)
226 sliced_populations_desc = ' ' + str([len(x) for x in sliced_populations])
227

228 figures_dict = boxplot_populations_last_value_by_equation(populations,
linthresh=PLOT_LINTHRESH, t0=t0, T=T,↪→

229 title_postfix=' whole
population')↪→

230

231 for eq_name, figure in figures_dict.items():
232 figure.savefig(os.path.join(POPULATION_BASE_PATH,
233 'cure_population_6OHDA_by_equation_%s.png' %

(eq_name)),↪→
234 dpi=FIG_DPI,
235 bbox_inches='tight')
236

237 figures_dict = boxplot_populations_last_value_by_equation(sliced_populations,
linthresh=PLOT_LINTHRESH,↪→

238 t0=t0, T=T,
239 title_postfix=sliced_populations_desc)
240 for eq_name, figure in figures_dict.items():
241 figure.savefig(os.path.join(POPULATION_BASE_PATH,
242 'cure_population_6OHDA_by_equation_%s_sliced.png'

% (eq_name)),↪→
243 dpi=FIG_DPI,
244 bbox_inches='tight')
245

246 figures_dict = histplot_populations_last_value_by_equation(populations,
linthresh=PLOT_LINTHRESH, t0=t0,↪→

247 T=T, title_postfix=' whole
population')↪→

248 for eq_name, figure in figures_dict.items():
249 figure.savefig(os.path.join(POPULATION_BASE_PATH,
250 'cure_population_6OHDA_by_equation_hist_%s.png'

% (eq_name)),↪→
251 dpi=FIG_DPI,
252 bbox_inches='tight')
253

254 figures_dict = histplot_populations_last_value_by_equation(sliced_populations,
linthresh=PLOT_LINTHRESH,↪→

255 t0=t0,
256 T=T,

title_postfix=sliced_populations_desc)↪→
257

258 for eq_name, figure in figures_dict.items():
259 figure.savefig(os.path.join(POPULATION_BASE_PATH,
260 'cure_population_6OHDA_by_equation_hist_%s_sliced.png'

% (eq_name)),↪→
261 dpi=FIG_DPI,
262 bbox_inches='tight')
263
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264 base_lesion = 'lesion_L6OHDA'
265 kind = ['SHAM', BL[base_lesion], '+EXT_DRN', '+EXT_LC', '+EXT_DRN+EXT_LC']
266 for fitted_individual, pop in enumerate(populations):
267 (boxplot, plot) = plot_population(pop[0], pop, None, t0, T,

linthresh=PLOT_LINTHRESH, plot_target=False)↪→
268 boxplot.savefig(
269 os.path.join(POPULATION_BASE_PATH,
270 'cure_population_%s_target_%s.png' % (base_lesion,

kind[fitted_individual])),↪→
271 dpi=FIG_DPI,
272 bbox_inches='tight')
273 plot.savefig(os.path.join(POPULATION_BASE_PATH,
274 'cure_population_%s_target_%s_plot.png' % (
275 base_lesion, kind[fitted_individual])),
276 dpi=FIG_DPI,
277 bbox_inches='tight')
278

279 for fitted_individual, pop in enumerate(sliced_populations):
280 (boxplot, plot) = plot_population(pop[0], pop, None, t0, T,

linthresh=PLOT_LINTHRESH, plot_target=False)↪→
281 boxplot.savefig(
282 os.path.join(POPULATION_BASE_PATH,
283 'cure_population_%s_target_%s_sliced.png' % (
284 base_lesion, kind[fitted_individual])),
285 dpi=FIG_DPI,
286 bbox_inches='tight')
287 plot.savefig(os.path.join(POPULATION_BASE_PATH,
288 'cure_population_%s_target_%s_plot_sliced.png' % (
289 base_lesion, kind[fitted_individual])),
290 dpi=FIG_DPI,
291 bbox_inches='tight')
292

293 # CURABLE VS UNCURABLE
294 stats_individuals_cure_combined = list()
295 stats_individuals = list()
296 stats_individuals_L6OHDA = list()
297

298 for i in individuals:
299 sham = i.lesion_SHAM()
300 l6ohda = Healthy_combined_fit()
301 l6ohda.update(i.lesion_L6OHDA().copy())
302 l6ohda = l6ohda.lesion_SHAM()
303 sham['fitness_history'] = i['fitness_history']
304 l6ohda['fitness_history'] = i['fitness_history']
305 stats_individuals.append(sham)
306 stats_individuals_L6OHDA.append(l6ohda)
307

308 for i in individuals_cure_combined:
309 cured = i.cure_DRN_LC().lesion_SHAM()
310 cured['fitness_history'] = i['fitness_history']
311 stats_individuals_cure_combined.append(cured)
312

313 cured_threshold = 5
314

315 cured = [i for i in stats_individuals_cure_combined if
316 -np.log10(1 - i['fitness_history'][-1][1]) >= cured_threshold]
317 not_cured = [i for i in stats_individuals_cure_combined if
318 -np.log10(1 - i['fitness_history'][-1][1]) < cured_threshold]
319

320 figure = boxplot_population_parameters(stats_individuals,
linthresh=BOXPLOT_LINTHRESH, color='black')↪→

321 figure = boxplot_population_parameters(stats_individuals_L6OHDA,
linthresh=BOXPLOT_LINTHRESH, color='orange',↪→
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322 figure=figure, alt_title='SHAM vs 6OHDA
(%s - %s)' % (↪→

323 len(stats_individuals), len(stats_individuals_L6OHDA)))
324 figure.savefig(os.path.join(POPULATION_BASE_PATH,
325 'cure_population_parameters_SHAM_vs_6OHDA.png'),
326 dpi=FIG_DPI,
327 bbox_inches='tight')
328

329 figure = boxplot_population_parameters(stats_individuals,
linthresh=BOXPLOT_LINTHRESH, color='black')↪→

330 figure = boxplot_population_parameters(stats_individuals_cure_combined,
linthresh=BOXPLOT_LINTHRESH,↪→

331 color='orange',
332 figure=figure, alt_title='SHAM vs TREATED

(%s - %s)' % (↪→
333 len(stats_individuals), len(stats_individuals_cure_combined)))
334 figure.savefig(os.path.join(POPULATION_BASE_PATH,
335 'cure_population_parameters_SHAM_vs_TREATED.png'),
336 dpi=FIG_DPI,
337 bbox_inches='tight')
338

339 figure = boxplot_population_parameters(stats_individuals_L6OHDA,
linthresh=BOXPLOT_LINTHRESH, color='black')↪→

340 figure = boxplot_population_parameters(stats_individuals_cure_combined,
linthresh=BOXPLOT_LINTHRESH,↪→

341 color='orange',
342 figure=figure, alt_title='6OHDA vs TREATED

(%s - %s)' % (↪→
343 len(stats_individuals_L6OHDA), len(stats_individuals_cure_combined)))
344 figure.savefig(os.path.join(POPULATION_BASE_PATH,
345 'cure_population_parameters_6OHDA_vs_TREATED.png'),
346 dpi=FIG_DPI,
347 bbox_inches='tight')
348

349 figure = boxplot_population_parameters(cured, linthresh=BOXPLOT_LINTHRESH,
color='green')↪→

350 figure = boxplot_population_parameters(not_cured, linthresh=BOXPLOT_LINTHRESH,
color='red', figure=figure,↪→

351 alt_title='Cured vs Not-Cured (%s - %s)' % (
352 len(cured), len(not_cured)))
353 figure.savefig(os.path.join(POPULATION_BASE_PATH,
354 'cure_population_parameters_Cured_vs_NotCured.png'),
355 dpi=FIG_DPI,
356 bbox_inches='tight')
357

358 figure = boxplot_population_parameters(stats_individuals_L6OHDA,
linthresh=BOXPLOT_LINTHRESH, color='black')↪→

359 figure = boxplot_population_parameters(cured, linthresh=BOXPLOT_LINTHRESH,
color='orange',↪→

360 figure=figure, alt_title='6OHDA vs Cured
(%s - %s)' % (↪→

361 len(stats_individuals_L6OHDA), len(cured)))
362 figure.savefig(os.path.join(POPULATION_BASE_PATH,
363 'cure_population_parameters_6OHDA_vs_CURED.png'),
364 dpi=FIG_DPI,
365 bbox_inches='tight')
366

367 figure = boxplot_population_parameters(stats_individuals_L6OHDA,
linthresh=BOXPLOT_LINTHRESH, color='black')↪→

368 figure = boxplot_population_parameters(not_cured, linthresh=BOXPLOT_LINTHRESH,
color='orange',↪→

369 figure=figure, alt_title='6OHDA vs
Not-Cured (%s - %s)' % (↪→

370 len(stats_individuals_L6OHDA), len(not_cured)))
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371 figure.savefig(os.path.join(POPULATION_BASE_PATH,
372 'cure_population_parameters_6OHDA_vs_NotCured.png'),
373 dpi=FIG_DPI,
374 bbox_inches='tight')
375

376 a_EXT_DRN = list()
377 a_EXT_LC = list()
378 CDRN___a_EXT_DRN = list()
379 CLC___a_EXT_LC = list()
380 FITS = list()
381 for i in [i for i in individuals_cure_combined if
382 -np.log10(1 - i['fitness_history'][-1][1]) >= cured_threshold]:
383 a_EXT_DRN.append(i.P['a_EXT_DRN'])
384 a_EXT_LC.append(i.P['a_EXT_LC'])
385 CDRN___a_EXT_DRN.append(i.P['CDRN___a_EXT_DRN'])
386 CLC___a_EXT_LC.append(i.P['CLC___a_EXT_LC'])
387 FITS.append(-np.log10(1 - i['fitness_history'][-1][1]))
388

389 a_EXT_DRN = np.array(a_EXT_DRN)
390 a_EXT_LC = np.array(a_EXT_LC)
391 CDRN___a_EXT_DRN = np.array(CDRN___a_EXT_DRN)
392 CLC___a_EXT_LC = np.array(CLC___a_EXT_LC)
393

394 D_DRN = (CDRN___a_EXT_DRN - a_EXT_DRN) / a_EXT_DRN
395 D_LC = (CLC___a_EXT_LC - a_EXT_LC) / a_EXT_LC
396

397 FITS = np.array(FITS)
398 FITS = 255 * (FITS - min(FITS)) / (max(FITS) - min(FITS))
399 FITS = [plt.cm.plasma(int(f)) for f in FITS]
400 figure = plt.figure()
401

402 plt.scatter(D_LC, D_DRN, c=FITS)
403 plt.title('Treatment Combined Relative $\Delta$a_EXT_LC vs $\Delta$a_EXT_DRN

(%s)' % len(D_LC))↪→
404 plt.xlabel('$\Delta$a_EXT_LC')
405 plt.ylabel('$\Delta$a_EXT_DRN')
406 plt.xscale('symlog', linthresh=1e-1, subs=SUBS)
407 plt.yscale('symlog', linthresh=1e-8, subs=SUBS)
408 plt.grid(which='both')
409 figure.savefig(os.path.join(POPULATION_BASE_PATH,
410 'cure_combined_relativedelta_parameters.png'),
411 dpi=FIG_DPI,
412 bbox_inches='tight')
413

414 figures_dict = histplot_population_parameters(populations, title_postfix='
whole population', linthresh=False)↪→

415 for param, figure in figures_dict.items():
416 figure.savefig(os.path.join(POPULATION_BASE_PATH,
417 'cure_populations_by_parameter_%s.png' % (param)),
418 dpi=FIG_DPI,
419 bbox_inches='tight')
420

421 figures_dict = histplot_population_parameters(sliced_populations,
title_postfix=sliced_populations_desc,↪→

422 linthresh=False)
423 for param, figure in figures_dict.items():
424 figure.savefig(os.path.join(POPULATION_BASE_PATH,
425 'cure_populations_by_parameter_%s_sliced.png' %

(param)),↪→
426 dpi=FIG_DPI,
427 bbox_inches='tight')
428

429 for i in cured:
430 i['name'] = i['name'].split(' ')[0] + ' CURED'
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431 for i in not_cured:
432 i['name'] = i['name'].split(' ')[0] + ' NOT_CURED'
433

434 populations = [individuals, individuals_6OHDA, cured, not_cured]
435 figures_dict = histplot_population_parameters(populations, title_postfix='

whole population', linthresh=False)↪→
436 for param, figure in figures_dict.items():
437 figure.savefig(os.path.join(POPULATION_BASE_PATH,
438 'cure_vs_not_cured_populations_by_parameter_%s.png'

% (param)),↪→
439 dpi=FIG_DPI,
440 bbox_inches='tight')
441

442

443 if __name__ == '__main__':
444 # main(fit=False, plot=True)
445 main(fit=True, plot=False)

B.8 Statistics tables
1 from CONF import SIMULATION_TIME, POPULATION_BASE_PATH
2 from models import *
3 from plotting import *
4 from s02_population import slice_populations
5 from s04_treatment import BL, POPULATION_BASE_PATH___CURE_COMBINED,

POPULATION_BASE_PATH___CURE_DRN, \↪→
6 POPULATION_BASE_PATH___CURE_LC
7 import os
8

9 PLOT_DERIVATIVES = False
10 PLOT_LINTHRESH = False # 10 ** -4
11 BOXPLOT_LINTHRESH = 1e-4
12

13

14 def tukey__str__(tukey_stat):
15 # Note: `__str__` prints the confidence intervals from the most
16 # recent call to `confidence_interval`. If it has not been called,
17 # it will be called with the default CL of .95.
18 if tukey_stat._ci is None:
19 tukey_stat.confidence_interval(confidence_level=.95)
20 s = ("Tukey's HSD Pairwise Group Comparisons"
21 f" ({tukey_stat._ci_cl * 100:.1f}% Confidence Interval)\n")
22 s += "Comparison Statistic p-value Lower CI Upper CI\n"
23 for i in range(tukey_stat.pvalue.shape[0]):
24 for j in range(i, tukey_stat.pvalue.shape[0]):
25 if i != j:
26 s += (f" ({i} - {j}) {tukey_stat.statistic[i, j]:>12.3e}"
27 f"{tukey_stat.pvalue[i, j]:>12.3e}"
28 f"{tukey_stat._ci.low[i, j]:>12.3e}"
29 f"{tukey_stat._ci.high[i, j]:>12.3e}\n")
30 return s
31

32

33 def main(fit=True, plot=False):
34 t0 = 0
35 T = SIMULATION_TIME
36 if fit:
37 pass
38 else:
39 files = sorted(filter(lambda x: x.startswith('S_'),

os.listdir(POPULATION_BASE_PATH + '')))↪→
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40 individuals = [Healthy_combined_fit.load(POPULATION_BASE_PATH + '%s' % f) for f
in files]↪→

41 reject_threshold = 1 - 2e-8
42 individuals = [ind for ind in individuals if ind['fitness_history'][-1][1] >

reject_threshold]↪→
43 individuals_6OHDA = [ind._impose_target(ind.lesion_L6OHDA()) for ind in

individuals]↪→
44

45 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH___CURE_DRN + '')))↪→

46 individuals_cure_DRN = [Cure_DRN.load(POPULATION_BASE_PATH___CURE_DRN + '/%s' %
f) for f in files]↪→

47 for i in individuals_cure_DRN:
48 i.apply()
49

50 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH___CURE_LC + '')))↪→

51 individuals_cure_LC = [Cure_LC.load(POPULATION_BASE_PATH___CURE_LC + '/%s' % f)
for f in files]↪→

52 for i in individuals_cure_LC:
53 i.apply()
54

55 files = sorted(filter(lambda x: x.startswith('S_'),
os.listdir(POPULATION_BASE_PATH___CURE_COMBINED + '')))↪→

56 individuals_cure_combined =
[Cure_combined.load(POPULATION_BASE_PATH___CURE_COMBINED + '/%s' % f) for
f in

↪→
↪→

57 files]
58 for i in individuals_cure_combined:
59 i.apply()
60

61 if plot:
62 print_title("STEP 05: statistics", 'STEP 05')
63 reject_threshold = 1 - 2e-8
64 rejects = [ind for ind in individuals if ind['fitness_history'][-1][1] <=

reject_threshold]↪→
65 individuals = [ind for ind in individuals if ind['fitness_history'][-1][1] >

reject_threshold]↪→
66

67 populations = list()
68

69 lesions_list = ['lesion_SHAM', 'lesion_L6OHDA', 'lesion_LpCPA', 'lesion_LDSP4',
70 'lesion_L6OHDA_LpCPA',
71 'lesion_L6OHDA_LDSP4']
72 for lesion in lesions_list:
73 populations.append([i.__getattribute__(lesion)() for i in individuals])
74

75 populations = slice_populations(populations)
76 populations_pCPA = [populations[0], populations[1], populations[2],

populations[4]]↪→
77 ll_pCPA = ['lesion_SHAM', 'lesion_L6OHDA', 'lesion_LpCPA',
78 'lesion_L6OHDA_LpCPA',
79 ]
80 ll_DSP4 = ['lesion_SHAM', 'lesion_L6OHDA', 'lesion_LDSP4',
81 'lesion_L6OHDA_LpCPA',
82 ]
83 populations_DSP4 = [populations[0], populations[1], populations[3],

populations[5]]↪→
84

85 for pop, ll in [(populations, lesions_list), (populations_pCPA, ll_pCPA),
(populations_DSP4, ll_DSP4)]:↪→

86 for eq in pop[0][0]['equations']:
87 eq_data = np.array(
88 [np.array(
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89 [m.simulate(m.target_as_y0(), t0,
T)['y'].transpose()[-1][m['equations'].index(eq)]
for

↪→
↪→

90 m
91 in
92 p]) for p in pop])
93

94 DFB = len(eq_data) - 1
95 DFW = len(eq_data.flatten()) - len(eq_data)
96 f, p = stats.f_oneway(*eq_data)
97 text = ["Groups: %s" % ' '.join(str(i) + ':' + BL[g] for i, g in

enumerate(ll))]↪→
98 text.append("ANOVA: F=%.3e, p=%.3e, dofB=%s, dofW=%s" % (f, p, DFB, DFW))
99 text.append(tukey__str__(stats.tukey_hsd(*eq_data)))

100 text = '\n'.join(text)
101 with open(os.path.join(POPULATION_BASE_PATH,

'ANOVA_lesions_%s___%s.txt' % (eq, '-'.join(ll))),↪→
102 'w') as f:
103 f.write(text)
104 print(eq + ':\n')
105 print(text)
106

107 populations = slice_populations([individuals, individuals_6OHDA,
108 [i.cure_DRN() for i in individuals_cure_DRN],
109 [i.cure_LC() for i in individuals_cure_LC],
110 [i.cure_DRN_LC() for i in

individuals_cure_combined],↪→
111 ])
112

113 groups = ['SHAM', BL['lesion_L6OHDA'], '+cure_DRN',
114 '+cure_LC', '+cure_DRN+cure_LC']
115

116 sim_data = [Parallel(n_jobs=-1)(delayed(m.simulate)(m.target_as_y0(), t0, T)
for m in p) for p in↪→

117 populations]
118

119 eqs_index = populations[0][0]['equations'].index
120

121 for eq in populations[0][0]['equations']:
122 eq_data = np.array(
123 [np.array(
124 [m['y'].transpose()[-1][eqs_index(eq)] for m
125 in
126 p]) for p in sim_data])
127

128 DFB = len(eq_data) - 1
129 DFW = len(eq_data.flatten()) - len(eq_data)
130 f, p = stats.f_oneway(*eq_data)
131 text = ["Groups: %s" % ' '.join(str(i) + ':' + g for i, g in

enumerate(groups))]↪→
132 text.append("ANOVA: F=%s, p=%s, dofB=%s, dofW=%s" % (f, p, DFB, DFW))
133 text.append(tukey__str__(stats.tukey_hsd(*eq_data)))
134 text = '\n'.join(text)
135 with open(os.path.join(POPULATION_BASE_PATH, 'ANOVA_cure_%s.txt' % eq),

'w') as f:↪→
136 f.write(text)
137 print(eq + ':\n')
138 print(text)
139

140

141 if __name__ == '__main__':
142 main(fit=False, plot=True)
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