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Introduction

Data analysis: Statistics and probability

o Data analysis is a process to transform raw data in usable information

Data analysis
RAW DATA INFORMATION

@ Statistics is an instrument to perform presentation and interpretation of data

o Descriptive statistics: describes main features of a collection of data
o Inductive statistics: makes inference about a random process based on
observation during a finite amount of time

@ Probability theory is the mathematical foundation for statistics
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Introduction

Confirmatory and exploratory data analysis

o Exploratory data analysis: explores data to find new hypothesis to test
e Suggest hypothesis about causes of observed phenomena
o Asses assumptions on which statistical inference will be based
o Select appropriate statistical tools and techniques
o Eventually suggest further data collection

o Confirmatory data analysis: statistical hypothesis testing

Used to make statistical decisions on top of experimental data

e Frequentist hypothesis testing: Hypothesis is either true or false
o Bayesian inference: degree of belief in truthfulness of hypothesis
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Introduction

Experimental vs observational studies

o Experimental studies

. Measure
Measure Manipulate :
again,
the system the system
compare

Example: study if and how free coffee will improve students’ performance

o Observational studies: no experimental manipulation, only gather and
analyze data!
Example: Study correlation between number of beers drunk on Wednesday
evening and performance on exam taken the day after
e Be careful who pays! (expected results can be induced through inappropriate
manipulation)
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General picture

Introduction
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Introduction

Data analysis in particle physics

@ Observe events of a certain kind (particle collisions)
@ Measure characteristics of each event

@ Theory (SM) predicts distribution of this properties up to some free
parameters

Hence one has to:
@ Estimate (measure) the parameters
@ Quantify the uncertainty of the parameters estimates

© Test the extent to which a theory's predictions is in agreement with the data
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Introduction

Signal vs background(s)

@ Signal: event coming from the physical process under study
(for example H — ZZ — eTe~ete™)

o Background: any other event
e Trivial: any event which is not producing four electrons as final state

e Dangerous: any process which can give four electrons in the final state;
Any inaccuracy which results in the detection of four electrons (instead of

three and a shower, for example)
Example: signal pp - H — ZZ — 4e, background pp — ZZ — 4e
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Introduction

Separating signal and background

@ Be aware:
o Nature is probabilistic: for a given event it's not possible to tell whether it's
signal or backgroud

o We can only make educated guess:
p(event|signal), p(event|background)

@ Separate as much as possible signal from background events — clean

reduced sample

o Often we have to find maximum reduction of background for given
signal acceptance

Skimming
and pre-
selection
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Introduction

Exploring the data

o After data is collected — exploratory data analysis

@ Example: data reduction (skimming and preselection)
o Goal: get rid of unuseful events

o Unuseful is not uniquely defined: some background events are interesting for
control and measurement (detector calibration, etc.)

o LHC-CMS example:
@ ~ 10° events/year (after trigger!)

@ ~ 1MB per event

e =~ 1PB/year
o Interesting physical processes are rare
o 10 H—ZZ—4e events/year

o Difficult not to lose too many signal events when skimming!
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Introduction

Exploring the data (cont.)

Skimming and preselection are quite different processes depending on purpose:
@ Measure properties of a particle
@ Measure frequency of decay
@ Explore possible hypotheses
@ Test existing hypotheses

Skimming and preselection are post-mortem processes that can be corrected and
reprocessed.

@ Hardware system which decides which event to store
o If event not stored, there is no way back! It can influence the whole analysis!

@ Multi-level decision based on small subset of inaccurate data from very fast
detectors

@ ATLAS trigger LV1 decides in & 2us including cable delays

o Reduces stored events from 15 MHz to 70 KHz, whole trigger goes down to
500Hz

v
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Probability: basic concepts
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Probability: basic concepts

Mathematical probability

o Define Q as an exclusive set of all possible elementary events x;
Exclusiveness: the occurrence of x; implies none of the others occurs

@ P(x;) probability of occurrence of x;, such that:
a. P(x)>0 Vi

b. P(x; or xj) = P(x;) + P(x;)
c. Y oPx)=1
@ This is the base for more complex expressions:

e non-elementary events (i.e. sets of elementary events)

e non-exclusive events (i.e. overlapping sets of elementary events)
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Probability: basic concepts

Frequentist probability

o Experiment:
o N events observed

e Out of them n is of type x
o Frequentist probability that an event will be of type x:
n
P(x)= lim —
(X) NI—>oo N

@ Important restriction: can only be applied to repeatable experiments
e Ex. cannot define probability that it will snow tomorrow

o Note that the job of a scientist is to try to get as close as possible to
repeatable experiments
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Probability: basic concepts

..more on Frequentist probability

@ Probabilities are only associated with data: outcomes of repeatable
observations

o P(Higgs boson exists) or P(0.1 < x < 0.2) are either 0 or 1, but we don't
know which.
(Frequentist statistics tools not suitable for this)

@ Tools of frequentist statistics tell what to expect, under the assumption of
certain probabilities, about hypothetical repeated observations:
Preferred theories are those for which observatios would be considered
"usual”
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Probability: basic concepts

Bayesian probability

@ Based on the concept of "degree of belief”

@ Operational definition (by Finneti): "What amount of money one is willing to
bet based on her belief on the future occurrence of the event?”

@ Bayesian inference:
P(DIH)P(H)
P(D)

where in this case H is an hypothesis, D is data

P(H|D) =

@ P(H) is prior probability of H: probability that H is correct before D is seen

e P(D|H) is conditional probability of seeing data D knowing that the
hypothesis H is true (likelihood)

e P(D) is marginal probability of D: probability of D to happen under all
possible hypotheses

e P(H|D) is posterior probability: probability that hypothesis is true, given
the data and the previous state of belief about the hypothesis
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Probability: basic concepts

...more on Bayesian probability

@ Provide natural treatment of non-repeatable fenomena:
P(Higgs boson exists) or P(0.1 < as < 0.2)

@ No golden-rule for priors, it's a subjective opinion
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Probability: basic concepts

Example: Who will pay the next round?

Drinking with a friend, next round payed by who extracts lower valued card

Probability that friend is cheating if you pay losts consecutive times?

Assumptions:

@ P(cheat) = 0.05 and P(honest) = 0.95 (old friend unlikely to cheat)

o P(lose|cheat) =1 and P(lose|honest) = 2= (50% probab. each turn)
Bayesian solution:

P(losts|cheat) P(cheats)
P(losts|cheat)P(cheat) + P(losts|honest)P(honest)
0.05

P(cheat|losts) =

0.05
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Probability: basic concepts

Random variables

@ Random event: event having more than one possible outcome
e Each outcome may have associated a probability

e Outcome not predictable, only probabilities are known
@ Different outcomes may take different numerical values:

X1, X2, ... — random variable x
P(x1), P(x2), ... form a probability distribution

@ If observations are independent the distribution of each random variable is
unaffected by knowledge of any other observation

@ At experiment consisting of N repeated observations of the same random
variable x can be considered as a single observation of a random vector x
with coponents xi, ..., X,
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Probability: basic concepts

Discrete and continuos random variables

@ Discrete:

e "Roll a dice”: limited and discrete sample space

e Discrete probability distribution (one value for each possible outcome)
e Continuos:

e "Spin a spinner”: real number in [0, 27]

@ X = an outcome

P(x)=0V x

P(x €[i,j]) >0
P(x € [0,7]) = % (for the spinner)

In general: P(A< x < B) = / p(x)dx
A
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Probability: basic concepts

Probability density function

Let m be a possible outcome of an observation with possible values x € [a, b]
We define the p.d.f. as:

F(x;0)dx = P(m € [x,x + dx])

where 0 represents one or more parameters for f

b b
° / f(x)dx =1 (Z f(x)=1if discrete)

@ x,0 may be vectors

@ Usually in physics 8 unknown, we want to estimate its value from a set of
measurements of x (discussed later)
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Probability: basic concepts

Cumulative and marginal distribution

Cumulative distribution function

o CDF: VY € R, v
F(Y)=P(x<Y) :/ f(x)dx
o x & [x77 "), 7]
= F(Xmin) = 0, F(Xmax) = 1
e F(Y) is monotonic

Marginal density function
@ Is the projection of multidimensional
density
Ex: given f(x,y),
Vimax
Fu(X) = / f(x,y)dy

Ymin

A= [ o :

Xmin
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Probability: basic concepts

Main distribution’s properties

Let f(x) be a probability density function.
o Expectation:

o Expectation of x (expected value, mean value, measure of the distribution’s
location):

E(x)=p=x=(x)= [ x f(x)dx

e Variance (measure of the distribution’s spread):
Vi) = 0 = Ellx = ] = EG2) = 2 = [ (= ()

e o is called standard deviation
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Probability: basic concepts

Reminder of most important distributions

Binomial W p—0; Np=p ( Poisson. .
. NY r N—r ,u e
P(riN,p) = (7)p"(1—p)"™"]

P(x; N) =
n Ik U NN
Al Pt P 2114

Multinomial Chi—square
P(rl,...,/\;;f; N, p1,...px) = x7-le=3
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Statistical investigation  Predictions

Prediction: Two general classes of problems

© Probabilistic model assumed to be known: want to make predictions about

future observations
Ex: we know the distribution of a random variable x, we wish to predict the
average x of next n future outcomes

© Probabilistic model not known: one or more parameters ; unknow

o Estimate parameters values (parameter estimation)
e Decide if the 6;s form a set of known constants (hypothesis testing)

Ex: after tossing a coin 1000 times, decide if coin is fair
Ex: after a finite number of observation of a random variable x, estimate its
average value x
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Statistical investigation  Predictions

Known model: possible predictions

x random variable with known distribution, predict its value at a future trial.

@ Point prediction: determine a constant ¢ which minimizes error x — ¢ in
some sense (future outcome cannod be predicted but only estimated).
If error defined as E,.(x) = (x — ¢)? then ¢ = E(x).

@ Interval prediction: determine two constants ¢, ¢, such that
P(Cl<X<C2):’7:1—(5

where + is an arbitrary constant called confidence level
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Statistical investigation Predictions

Known model: Interval prediction

P(C1<X<C2):’y:1—6

@ Bigger v means prediction
x € (1, &) reliable but ¢; — ¢, big.

@ Usually ~y fixed and ¢1, ¢ chosen to
minimize distance (symmetric
choice not given to be the best
one).

@ Many methods to determine ci, ¢
available depending on random
variable distribution.
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Statistical investigation

Predictions

Unknown model: parameter estimation

@ Distribution of a random variable x is a known function f(x, 0)

@ 0 is an unknown parameter, scalar or vector

@ We want to estimate 6 after n repetitions of an experiment (x; outcome of

i-th experiment, X = [xq, ..., X,] is called observation vector)

Point estimate

e Function § = g(X)
o 0 is the point estimator of 6.
o f is unbiased if E(A) = 6

o If error limit lim § —0=0
n—o00

0 is called a consistent
estimator

Interval estimate

@ interval estimator
(01,62) = (g1(X), &2(X))

@ (01,62) is a v confidence
interval of 0 if
P(el <9<92):’}/

o g1(X), g(X) are to be chosen
to minimize 6, — 0,
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Statistical investigation Hypothesis testing
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Statistical investigation Hypothesis testing

Hypothesis testing

Statistical Hypothesis
Assertion or conjecture concerning one or more populations. J

@ Prove with certainty: absolute knowlegde, examine entire population. Not
physically possible.

@ How to use a random sample as evindence in support or against the
hypothesis?
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Statistical investigation Hypothesis testing

Hypothesis testing...

...is formulated in terms of two hypotheses:
@ Hy: the null hypothesis
@ Hi: an alternate hypothesis (the one we want to test)
We reduce the problem to two possible outcomes:
@ Reject Hy and accept H;: sample provides sufficient evidence in favor of H;
@ Not reject Hy: sample does not provide sufficient evidence in favor of Hj

Failure to reject Hy does not imply Hy true. There just is no sufficient evidence in
favor of H; to assert it true.

Example jury trial: Hp (innocent) is rejected if H; (guilty) is supported by
evidence beyond reasonable doubt. Failure to reject Hy does not imply
innocence, just lack of evidence.
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Statistical investigation Hypothesis testing

Hypothesis testing (example)

Distribution of a random variable is a function (x, 6)
Test 0 = 0y (Ho) versus 6 # 6y (Hy)

Possible values of 6 in H; form a set ©;

If |©1] =1 H; is called simple, otherwise composite

The null hypothesis Hy is usually simple.

Basic idea
o Under Hp, f(x,6) is negligible in a certain region D, of sample space
o If x € D, it is reasonable to reject Hy

o If x € D¢, it is reasonable not to reject Hy

D, is called critical region of the test, D, the region of acceptance
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Statistical investigation Hypothesis testing

Hypothesis testing: purpose

@ Purpose of hypothesis testing is NOT to determine whether Hy or H; true!
... but to establish whether the evidence supports the rejection of Hy

Example
Establish if a coin is fair (Hp)
@ Toss the coin 100 times: head shows up k times
o If k <15, we reject Hy: evidence shows that coin is not fair

o If kK > 40, we fail to reject Hy: evidence does not support the rejection of
hypothesis that coin is fair

@ But this does not mean that the coin is fair, it could be p = 0.48
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture

Claim: rate of defective chips is 5%
Let py be the true defective probability, we want to test wether:

@ Hy: pgy = 0.05
e Hi: pgy > 0.05

based on a sample of 100 chips from the production line

Test statistic

Is a function of the sample f : S — R.

It is used to reduce the data (multiple data in a multidimensional space) to a
number that can be used to perform an hypothesis test.

Generally chosen such that it can quantify behaviours that would distinguish the
null hypothesis from the alternative one.
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (1)

Test statistic: X denotes the number of defective pieces in the sample of 100.

This is a Bernoulli process (defectiveness of each chip is independent), in a sample
of size Sg we expect Sspy (in the example 100 - 0.05 = 5) defective pieces.

An example of a good test is to reject Hy if X > 10, which gives a strong
indication that py > 0.05.

pq = 0.05 Reject Hp, p > 0.05

0 / 10 «——— critical region — 100

Do not reject Hy critical value
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Statistical investigation

Types of errors

Hypothesis testing

Decision is based on a finite sample: may be wrong!

Hy true H; true
Not reject Hy Correct Type Il error
Reject Hp Type | error Correct

Type | error

Acceptance of H; when Hy is true. The probability o of committing this error is

called significance level or size of the test

Type Il error

Failure to reject Hy where H; is true. The probability 1 — 8 of not committing
this error is called power of the test (with respect to the alternative H;)

The objective is to reduce both v and 8 as much as possible.
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Statistical investigation Hypothesis testing

Visual interpretation

< Accept Hy Reject Hp ——

2 f(X|H0)
Type Il error / ' Type | error f(xtth)
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Statistical investigation Hypothesis testing

Visual interpretation: critical region

& Accept Hy Reject Hp ——m

N

f(x|Ho)
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Statistical investigation Hypothesis testing

Visual interpretation: overlap

¢ Accept Hy

Reject Hp —

f(x|Ho)

X
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (2)

Test statistic: X > 10
Size of the test: probability of type | error: reject Hy when true
We assume a binomial distribution: f(k;n,p) = P(X = k) = (})p*(1 — p)"*

a = P(X>10|pg = 0.05)
100 100
> P(X =ilpsg =0.05) = Y _ b(i; n = 100, p = 0.05)
i=10 i=10
100
100 : :
> < ,, >o.05'(1 —0.05)1%0~" = 0.0282
i=10
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (3)

The power of the test 1 — 3 (probability of not rejecting Hy when H; true ) for
Hi : pg > 0.05 cannot be computed because the true py is unknown.
H; can be reformulated to be for example H; : py = 0.1 or Hy : py = 0.15

By, = P(X <10|ps=0.1)
= zg: b(i,n = 100,p = 0.1) = 0.4513
i=0
and
Br, = P(X <10|py = 0.15)

9
= ) b(i,n=100,p = 0.15) = 0.0551

i=0
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (4): critical value

A bigger critical region reduces § but enlarges «, and viceversa.
What happens by reducing the critical value?

pq = 0.05 Reject Hy, p > 0.05
0 8 10 «——— old critical region ——— 100
/ T «—— new critical region ———

Do not reject Hy critical value

100
a = Y b(i,n=100,p=0.05)=0.128 (was 0.0282)
i=8
B, = Y b(i,n=100,p=0.1)=0.206 (was0.4513)
i=0
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (5): sample size

Both o and 3 can be reduced simultaneously increasing the sample size.
For example, increasing the sample size to 150 and setting the critical value to 12

yields:
150
a = Y b(i,n=150,p=0.05)=0.074 (was 0.128)
i=12
7
Bu, = > _b(i,n=150,p=0.1)=0.171 (was 0.206)
i=0
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Statistical investigation Discoveries and certainty
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Statistical investigation Discoveries and certainty

Standard deviations

o = V(EIX] - p)? = VEIX?] - E[X]?

—40 —-30 —-20 -—lo 2 lo 20 30 o
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Statistical investigation Discoveries and certainty

and here is the Higgs!

T T

ATLAS Preliminary 2011 + 2012 Data
105 —obs. Vs=7TeV: [Ldt=4.6-4.81b" 7
- - BExp s=8TeV: [Ldt=58591" ]
- O+1o -
B [Jx20 7]

—

95% CL Limit on o/og,,

RS
L1111l

107

CLs Limits

100 200 300 400 500 600
m,, [GeV]
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Statistical investigation Discoveries and certainty

.. more in details, combined plot

4.6ifb - 10/fb 0710712012

mass = 125.5
obs = 1.597
exp =0.439
signal = 1.16
sigma =527

xsigm = 0.72

-

95% CL limit on oo™

130
Higgs boson mass GeV/c?
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Statistical investigation Discoveries and certainty

Want to know more?

Q&A session!

For further information call 1-800-scarli-help or:

Samuele Carli

E-mail:  scarli@cern.ch
Web: www.csspace.net
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