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Introduction

Data analysis: Statistics and probability

Data analysis is a process to transform raw data in usable information

RAW DATA INFORMATION
Data analysis

Statistics is an instrument to perform presentation and interpretation of data

Descriptive statistics: describes main features of a collection of data
Inductive statistics: makes inference about a random process based on
observation during a finite amount of time

Probability theory is the mathematical foundation for statistics
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Introduction

Confirmatory and exploratory data analysis

Exploratory data analysis: explores data to find new hypothesis to test

Suggest hypothesis about causes of observed phenomena
Asses assumptions on which statistical inference will be based
Select appropriate statistical tools and techniques
Eventually suggest further data collection

Confirmatory data analysis: statistical hypothesis testing
Used to make statistical decisions on top of experimental data

Frequentist hypothesis testing: Hypothesis is either true or false
Bayesian inference: degree of belief in truthfulness of hypothesis
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Introduction

Experimental vs observational studies

Experimental studies

Measure
the system

Manipulate
the system

Measure
again,

compare

Example: study if and how free coffee will improve students’ performance

Observational studies: no experimental manipulation, only gather and
analyze data!
Example: Study correlation between number of beers drunk on Wednesday
evening and performance on exam taken the day after

Be careful who pays! (expected results can be induced through inappropriate
manipulation)
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Introduction

General picture

World

Physical phenomena
described by PDF with
p unknown parameters

having true values θtrue =
(θtrue1 , θtrue2 , ..., θtruep )

Experiment

sample reality

Data Sample
x = (x1, ..., xn)

multivariate
random variable

Data analysis
parameter
estimates,

confidence limits

feedback

parameters estimates

models

Samuele Carli ( Università degli studi di Firenze , CERN) Data Analysis September 5, 2013 6 / 49



Introduction

Data analysis in particle physics

Observe events of a certain kind (particle collisions)

Measure characteristics of each event

Theory (SM) predicts distribution of this properties up to some free
parameters

Hence one has to:

1 Estimate (measure) the parameters

2 Quantify the uncertainty of the parameters estimates

3 Test the extent to which a theory’s predictions is in agreement with the data
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Introduction

Signal vs background(s)

Signal: event coming from the physical process under study
(for example H → ZZ → e+e−e+e−)

Background: any other event

Trivial: any event which is not producing four electrons as final state

Dangerous: any process which can give four electrons in the final state;
Any inaccuracy which results in the detection of four electrons (instead of
three and a shower, for example)
Example: signal pp → H → ZZ → 4e, background pp → ZZ → 4e
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Introduction

Separating signal and background

Be aware:

Nature is probabilistic: for a given event it’s not possible to tell whether it’s
signal or backgroud

We can only make educated guess:
p(event|signal), p(event|background)

Separate as much as possible signal from background events → clean
reduced sample

Trigger
Skimming
and pre-
selection

Selection

Often we have to find maximum reduction of background for given
signal acceptance
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Introduction

Exploring the data

After data is collected → exploratory data analysis

Example: data reduction (skimming and preselection)

Goal: get rid of unuseful events

Unuseful is not uniquely defined: some background events are interesting for
control and measurement (detector calibration, etc.)

LHC-CMS example:

∼ 109 events/year (after trigger!)

∼ 1MB per event

⇒∼ 1PB/year

Interesting physical processes are rare

10 H→ZZ→4e events/year

Difficult not to lose too many signal events when skimming!
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Introduction

Exploring the data (cont.)

Skimming and preselection are quite different processes depending on purpose:

Measure properties of a particle

Measure frequency of decay

Explore possible hypotheses

Test existing hypotheses

Skimming and preselection are post-mortem processes that can be corrected and
reprocessed.

Trigger is critical

Hardware system which decides which event to store

If event not stored, there is no way back! It can influence the whole analysis!

Multi-level decision based on small subset of inaccurate data from very fast
detectors

ATLAS trigger LV1 decides in ≈ 2µs including cable delays

Reduces stored events from 15 MHz to 70 KHz, whole trigger goes down to
500Hz
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Probability: basic concepts

Mathematical probability

Define Ω as an exclusive set of all possible elementary events xi
Exclusiveness: the occurrence of xi implies none of the others occurs

P(xi ) probability of occurrence of xi , such that:

a. P(xi ) ≥ 0 ∀i

b. P(xi or xj) = P(xi ) + P(xj)

c.
∑

Ω P(xi ) = 1

This is the base for more complex expressions:

non-elementary events (i.e. sets of elementary events)

non-exclusive events (i.e. overlapping sets of elementary events)
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Probability: basic concepts

Frequentist probability

Experiment:

N events observed

Out of them n is of type x

Frequentist probability that an event will be of type x :

P(x) = lim
N→∞

n

N

Important restriction: can only be applied to repeatable experiments

Ex. cannot define probability that it will snow tomorrow

Note that the job of a scientist is to try to get as close as possible to
repeatable experiments
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Probability: basic concepts

...more on Frequentist probability

Probabilities are only associated with data: outcomes of repeatable
observations

P(Higgs boson exists) or P(0.1 < x < 0.2) are either 0 or 1, but we don’t
know which.
(Frequentist statistics tools not suitable for this)

Tools of frequentist statistics tell what to expect, under the assumption of
certain probabilities, about hypothetical repeated observations:
Preferred theories are those for which observatios would be considered
”usual”
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Probability: basic concepts

Bayesian probability

Based on the concept of ”degree of belief”

Operational definition (by Finneti): ”What amount of money one is willing to
bet based on her belief on the future occurrence of the event?”

Bayesian inference:

P(H|D) =
P(D|H)P(H)

P(D)

where in this case H is an hypothesis, D is data

P(H) is prior probability of H: probability that H is correct before D is seen

P(D|H) is conditional probability of seeing data D knowing that the
hypothesis H is true (likelihood)

P(D) is marginal probability of D: probability of D to happen under all
possible hypotheses

P(H|D) is posterior probability: probability that hypothesis is true, given
the data and the previous state of belief about the hypothesis
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Probability: basic concepts

...more on Bayesian probability

Provide natural treatment of non-repeatable fenomena:
P(Higgs boson exists) or P(0.1 < αs < 0.2)

No golden-rule for priors, it’s a subjective opinion
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Probability: basic concepts

Example: Who will pay the next round?

Drinking with a friend, next round payed by who extracts lower valued card

Probability that friend is cheating if you pay losts consecutive times?

Assumptions:

P(cheat) = 0.05 and P(honest) = 0.95 (old friend unlikely to cheat)

P(lose|cheat) = 1 and P(lose|honest) = 2−N (50% probab. each turn)

Bayesian solution:

P(cheat|losts) =
P(losts|cheat)P(cheats)

P(losts|cheat)P(cheat) + P(losts|honest)P(honest)

P(cheat|0) =
0.05

0.05 + 0.95
= 0.05

P(cheat|5) =
0.05

0.05 + 2−50.95
= 0.63
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Probability: basic concepts

Random variables

Random event: event having more than one possible outcome

Each outcome may have associated a probability

Outcome not predictable, only probabilities are known

Different outcomes may take different numerical values:
x1, x2, ...→ random variable x
P(x1),P(x2), ... form a probability distribution

If observations are independent the distribution of each random variable is
unaffected by knowledge of any other observation

At experiment consisting of N repeated observations of the same random
variable x can be considered as a single observation of a random vector x
with coponents x1, ..., xn
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Probability: basic concepts

Discrete and continuos random variables

Discrete:

”Roll a dice”: limited and discrete sample space

Discrete probability distribution (one value for each possible outcome)

Continuos:

”Spin a spinner”: real number in [0, 2π]

x = an outcome

P(x) = 0 ∀ x

P(x ∈ [i , j ]) > 0

P(x ∈ [0, π]) =
1

2
(for the spinner)

In general: P(A < x < B) =

∫ B

A

p(x)dx
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Probability: basic concepts

Probability density function

Let m be a possible outcome of an observation with possible values x ∈ [a, b]
We define the p.d.f. as:

F (x ; θ)dx = P(m ∈ [x , x + dx ])

where θ represents one or more parameters for f∫ b

a

f (x)dx = 1

(
b∑
a

f (x) = 1 if discrete

)

x ,θ may be vectors

Usually in physics θ unknown, we want to estimate its value from a set of
measurements of x (discussed later)
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Probability: basic concepts

Cumulative and marginal distribution

Cumulative distribution function

CDF: ∀Y ∈ R,

F (Y ) = P(x ≤ Y ) =

∫ Y

xmin

f (x)dx

x ∈ [x
( 6=− inf)
min , x

(6=inf)
max ]

⇒ F (xmin) = 0,F (xmax) = 1
F (Y ) is monotonic

Marginal density function

Is the projection of multidimensional
density
Ex: given f (x , y),

Fx(X ) =

∫ ymax

ymin

f (x , y)dy

Fy (Y ) =

∫ xmax

xmin

f (x , y)dx x
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Probability: basic concepts

Main distribution’s properties

Let f (x) be a probability density function.

Expectation:

Expectation of x (expected value, mean value, measure of the distribution’s
location):

E(x) = µ = x̄ = 〈x〉 =

∫
x f (x)dx

Variance (measure of the distribution’s spread):

V (x) = σ2 = E [(x − µ)2] = E (x2)− µ2 =

∫
(x − µ)2f (x)dx

σ is called standard deviation
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Probability: basic concepts

Reminder of most important distributions

Normal

P(x ;µ, σ) =
1

σ
√

2π
e

(
− 1

2
(x−µ)2

σ2

)

Binomial
P(r ;N, p) =

(
N
r

)
pr (1− p)N−r

Poisson

P(r ;µ) =
µre−µ

r !

Multinomial
P(r1, ..., rk ;N, p1, .., pk) =

N!

r1!...rk !
pr1

1 ...p
rk
k

Chi-square

P(x ;N) =
x

N
2 −1e−

x
2

2
N
2 ΓN

2

N →∞

N →∞ µ→∞

N →∞

i = 2

p → 0; Np = µ
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Statistical investigation Predictions

Prediction: Two general classes of problems

1 Probabilistic model assumed to be known: want to make predictions about
future observations
Ex: we know the distribution of a random variable x , we wish to predict the
average x̄ of next n future outcomes

2 Probabilistic model not known: one or more parameters θi unknow

Estimate parameters values (parameter estimation)
Decide if the θi s form a set of known constants (hypothesis testing)

Ex: after tossing a coin 1000 times, decide if coin is fair
Ex: after a finite number of observation of a random variable x , estimate its
average value x̄
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Statistical investigation Predictions

Known model: possible predictions

x random variable with known distribution, predict its value at a future trial.

Point prediction: determine a constant c which minimizes error x − c in
some sense (future outcome cannod be predicted but only estimated).
If error defined as Err (x) = (x − c)2 then c = E (x).

Interval prediction: determine two constants c1, c2 such that

P(c1 < x < c2) = γ = 1− δ

where γ is an arbitrary constant called confidence level
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Statistical investigation Predictions

Known model: Interval prediction

P(c1 < x < c2) = γ = 1− δ

Bigger γ means prediction
x ∈ (c1, c2) reliable but c1 − c2 big.

Usually γ fixed and c1, c2 chosen to
minimize distance (symmetric
choice not given to be the best
one).

Many methods to determine c1, c2

available depending on random
variable distribution.

c1 c2 x

γ

δ

2

δ

2
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Statistical investigation Predictions

Unknown model: parameter estimation

Distribution of a random variable x is a known function f (x , θ)

θ is an unknown parameter, scalar or vector

We want to estimate θ after n repetitions of an experiment (xi outcome of
i-th experiment, X = [x1, ..., xn] is called observation vector)

Point estimate

Function θ̂ = g(X )

θ̂ is the point estimator of θ.

θ̂ is unbiased if E (θ̂) = θ

If error limit lim
n→∞

θ̂ − θ = 0

θ̄ is called a consistent
estimator

Interval estimate

interval estimator
(θ1, θ2) = (g1(X ), g2(X ))

(θ1, θ2) is a γ confidence
interval of θ if
P(θ1 < θ < θ2) = γ

g1(X ), g2(X ) are to be chosen
to minimize θ2 − θ1
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Statistical investigation Hypothesis testing
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Statistical investigation Hypothesis testing

Hypothesis testing

Statistical Hypothesis

Assertion or conjecture concerning one or more populations.

Prove with certainty: absolute knowlegde, examine entire population. Not
physically possible.

How to use a random sample as evindence in support or against the
hypothesis?
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Statistical investigation Hypothesis testing

Hypothesis testing...

...is formulated in terms of two hypotheses:

H0: the null hypothesis

H1: an alternate hypothesis (the one we want to test)

We reduce the problem to two possible outcomes:

Reject H0 and accept H1: sample provides sufficient evidence in favor of H1

Not reject H0: sample does not provide sufficient evidence in favor of H1

Warning!

Failure to reject H0 does not imply H0 true. There just is no sufficient evidence in
favor of H1 to assert it true.

Example jury trial: H0 (innocent) is rejected if H1 (guilty) is supported by
evidence beyond reasonable doubt. Failure to reject H0 does not imply
innocence, just lack of evidence.
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Statistical investigation Hypothesis testing

Hypothesis testing (example)

Distribution of a random variable is a function f (x , θ)

Test θ = θ0 (H0) versus θ 6= θ0 (H1)

Possible values of θ in H1 form a set Θ1

If |Θ1| = 1 H1 is called simple, otherwise composite

The null hypothesis H0 is usually simple.

Basic idea

Under H0, f (x , θ) is negligible in a certain region Dc of sample space

If x ∈ Dc , it is reasonable to reject H0

If x ∈ D̄c , it is reasonable not to reject H0

Dc is called critical region of the test, D̄c the region of acceptance
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Statistical investigation Hypothesis testing

Hypothesis testing: purpose

Purpose of hypothesis testing is NOT to determine whether H0 or H1 true!
... but to establish whether the evidence supports the rejection of H0

Example

Establish if a coin is fair (H0)

Toss the coin 100 times: head shows up k times

If k ≤ 15, we reject H0: evidence shows that coin is not fair

If k ≥ 40, we fail to reject H0: evidence does not support the rejection of
hypothesis that coin is fair

But this does not mean that the coin is fair, it could be p = 0.48
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture

Claim: rate of defective chips is 5%
Let pd be the true defective probability, we want to test wether:

H0: pd = 0.05

H1: pd ≥ 0.05

based on a sample of 100 chips from the production line

Test statistic

Is a function of the sample f : S → R.
It is used to reduce the data (multiple data in a multidimensional space) to a
number that can be used to perform an hypothesis test.
Generally chosen such that it can quantify behaviours that would distinguish the
null hypothesis from the alternative one.
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (1)

Test statistic: X denotes the number of defective pieces in the sample of 100.

This is a Bernoulli process (defectiveness of each chip is independent), in a sample
of size Ss we expect Sspd (in the example 100 · 0.05 = 5) defective pieces.

An example of a good test is to reject H0 if X ≥ 10, which gives a strong
indication that pd ≥ 0.05.

pd = 0.05 Reject H0, p > 0.05

0 10 100critical region

Do not reject H0 critical value
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Statistical investigation Hypothesis testing

Types of errors

Decision is based on a finite sample: may be wrong!

H0 true H1 true

Not reject H0 Correct Type II error

Reject H0 Type I error Correct

Type I error

Acceptance of H1 when H0 is true. The probability α of committing this error is
called significance level or size of the test

Type II error

Failure to reject H0 where H1 is true. The probability 1− β of not committing
this error is called power of the test (with respect to the alternative H1)

The objective is to reduce both α and β as much as possible.
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Statistical investigation Hypothesis testing

Visual interpretation

f (x |H0)

f (x |H1)

Reject H0Accept H0

Type I errorType II error
x
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Statistical investigation Hypothesis testing

Visual interpretation: critical region

f (x |H1)

Reject H0Accept H0

x

f (x |H0)

x
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Statistical investigation Hypothesis testing

Visual interpretation: overlap

f (x |H1)

Reject H0Accept H0

x

f (x |H0)

x
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (2)

Test statistic: X > 10
Size of the test: probability of type I error: reject H0 when true
We assume a binomial distribution: f (k ; n, p) = P(X = k) =

(
n
k

)
pk(1− p)n−k

α = P(X ≥ 10|pd = 0.05)

=
100∑
i=10

P(X = i |pd = 0.05) =
100∑
i=10

b(i ; n = 100, p = 0.05)

=
100∑
i=10

(
100

i

)
0.05i (1− 0.05)100−i = 0.0282
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (3)

The power of the test 1− β (probability of not rejecting H0 when H1 true ) for
H1 : pd > 0.05 cannot be computed because the true pd is unknown.
H1 can be reformulated to be for example H1 : pd = 0.1 or H2 : pd = 0.15

βH1 = P(X < 10|pd = 0.1)

=
9∑

i=0

b(i , n = 100, p = 0.1) = 0.4513

and

βH2 = P(X < 10|pd = 0.15)

=
9∑

i=0

b(i , n = 100, p = 0.15) = 0.0551
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (4): critical value

A bigger critical region reduces β but enlarges α, and viceversa.
What happens by reducing the critical value?

pd = 0.05 Reject H0, p > 0.05

0 8 10 100old critical region
new critical region

Do not reject H0 critical value

α =
100∑
i=8

b(i , n = 100, p = 0.05) = 0.128 (was 0.0282)

βH1 =
7∑

i=0

b(i , n = 100, p = 0.1) = 0.206 (was 0.4513)
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Statistical investigation Hypothesis testing

Case study: RAM chip manufacture (5): sample size

Both α and β can be reduced simultaneously increasing the sample size.
For example, increasing the sample size to 150 and setting the critical value to 12
yields:

α =
150∑
i=12

b(i , n = 150, p = 0.05) = 0.074 (was 0.128)

βH1 =
7∑

i=0

b(i , n = 150, p = 0.1) = 0.171 (was 0.206)
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Statistical investigation Discoveries and certainty
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Statistical investigation Discoveries and certainty

Standard deviations

σ =
√

(E [X ]− µ)2 =
√
E [X 2]− E [X ]2

µ−1σ 1σ−2σ 2σ−3σ 3σ−4σ 4σ

34.1%34.1%

13.6%13.6%

2.1%2.1% 0.1%0.1%
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Statistical investigation Discoveries and certainty

... and here is the Higgs!
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Statistical investigation Discoveries and certainty

... more in details, combined plot
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Statistical investigation Discoveries and certainty

Want to know more?

Q&A session!

For further information call 1-800-scarli-help or:

Samuele Carli
E-mail: scarli@cern.ch
Web: www.csspace.net
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