Statistical methods for Data Analysis

in particle physics an introduction

Samuele Carli

September 5, 2013

Contents

- Introduction
- 2 Probability: basic concepts
- 3 Statistical investigation

Data analysis: Statistics and probability

• Data analysis is a process to transform raw data in usable information

- Statistics is an instrument to perform presentation and interpretation of data
 - Descriptive statistics: describes main features of a collection of data
 - Inductive statistics: makes inference about a random process based on observation during a finite amount of time
- Probability theory is the mathematical foundation for statistics

Confirmatory and exploratory data analysis

- Exploratory data analysis: explores data to find new hypothesis to test
 - Suggest hypothesis about causes of observed phenomena
 - Asses assumptions on which statistical inference will be based
 - Select appropriate statistical tools and techniques
 - Eventually suggest further data collection
- Confirmatory data analysis: statistical hypothesis testing Used to make statistical decisions on top of experimental data
 - Frequentist hypothesis testing: Hypothesis is either true or false
 - Bayesian inference: degree of belief in truthfulness of hypothesis

Experimental vs observational studies

Experimental studies

Example: study if and how free coffee will improve students' performance

- **Observational studies**: no experimental manipulation, *only gather and analyze data!*
 - Example: Study correlation between number of beers drunk on Wednesday evening and performance on exam taken the day after
 - Be careful who pays! (expected results can be induced through inappropriate manipulation)

General picture

Data analysis in particle physics

- Observe events of a certain kind (particle collisions)
- Measure characteristics of each event
- Theory (SM) predicts distribution of this properties up to some free parameters

Hence one has to:

- Estimate (measure) the parameters
- Quantify the uncertainty of the parameters estimates
- Test the extent to which a theory's predictions is in agreement with the data

Signal vs background(s)

• **Signal**: event coming from the physical process under study (for example $H \to ZZ \to e^+e^-e^+e^-$)

- Background: any other event
 - Trivial: any event which is not producing four electrons as final state

Dangerous: any process which can give four electrons in the final state;
 Any inaccuracy which results in the detection of four electrons (instead of three and a shower, for example)

Example: signal pp o H o ZZ o 4e, background pp o ZZ o 4e

Separating signal and background

- Be aware:
 - Nature is probabilistic: for a given event it's not possible to tell whether it's signal or backgroud
 - We can only make educated guess: p(event|signal), p(event|background)
- ullet Separate as much as possible signal from background events o clean reduced sample

 Often we have to find maximum reduction of background for given signal acceptance

Exploring the data

- ullet After data is collected o exploratory data analysis
- Example: data reduction (skimming and preselection)
 - Goal: get rid of unuseful events
 - Unuseful is not uniquely defined: some background events are interesting for control and measurement (detector calibration, etc.)
 - LHC-CMS example:
 - ullet $\sim 10^9$ events/year (after trigger!)
 - ullet $\sim 1 MB$ per event
 - $\Rightarrow \sim 1PB/\text{year}$
 - Interesting physical processes are rare
 - 10 H→ZZ→4e events/year
 - Difficult not to lose too many signal events when skimming!

Exploring the data (cont.)

Skimming and preselection are quite different processes depending on purpose:

- Measure properties of a particle
- Measure frequency of decay
- Explore possible hypotheses
- Test existing hypotheses

Skimming and preselection are post-mortem processes that can be corrected and reprocessed.

Trigger is critical

- Hardware system which decides which event to store
- If event not stored, there is no way back! It can influence the whole analysis!
- Multi-level decision based on small subset of inaccurate data from very fast detectors
- ullet ATLAS trigger LV1 decides in $pprox 2\mu s$ including cable delays
- Reduces stored events from 15 MHz to 70 KHz, whole trigger goes down to 500Hz

Contents

- Introduction
- 2 Probability: basic concepts
- Statistical investigation
 - Predictions
 - Hypothesis testing
 - Discoveries and certainty

Mathematical probability

- Define Ω as an **exclusive** set of all possible elementary events x_i Exclusiveness: the occurrence of x_i implies none of the others occurs
- $P(x_i)$ probability of occurrence of x_i , such that:

a.
$$P(x_i) \geq 0 \quad \forall i$$

b.
$$P(x_i \text{ or } x_j) = P(x_i) + P(x_j)$$

c.
$$\sum_{i} P(x_i) = 1$$

- This is the base for more complex expressions:
 - non-elementary events (i.e. sets of elementary events)
 - non-exclusive events (i.e. overlapping sets of elementary events)

Frequentist probability

- Experiment:
 - N events observed
 - Out of them *n* is of type *x*
- Frequentist probability that an event will be of type x:

$$P(x) = \lim_{N \to \infty} \frac{n}{N}$$

- Important restriction: can only be applied to repeatable experiments
 - Ex. cannot define probability that it will snow tomorrow
 - Note that the job of a scientist is to try to get as close as possible to repeatable experiments

...more on Frequentist probability

- Probabilities are only associated with data: outcomes of repeatable observations
- P(Higgs boson exists) or P(0.1 < x < 0.2) are either 0 or 1, but we don't know which.

(Frequentist statistics tools not suitable for this)

 Tools of frequentist statistics tell what to expect, under the assumption of certain probabilities, about hypothetical repeated observations:
 Preferred theories are those for which observatios would be considered "usual"

Bayesian probability

- Based on the concept of "degree of belief"
- Operational definition (by Finneti): "What amount of money one is willing to bet based on her belief on the future occurrence of the event?"
- Bayesian inference:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

where in this case H is an **hypothesis**, D is data

- P(H) is **prior probability** of H: probability that H is correct before D is seen
- P(D|H) is **conditional probability** of seeing data D knowing that the hypothesis H is true (**likelihood**)
- P(D) is **marginal probability** of D: probability of D to happen under all possible hypotheses
- P(H|D) is **posterior probability**: probability that hypothesis is true, given the data and the previous state of belief about the hypothesis

...more on Bayesian probability

• Provide natural treatment of non-repeatable fenomena: P(Higgs boson exists) or $P(0.1 < \alpha_s < 0.2)$

• No golden-rule for priors, it's a subjective opinion

Example: Who will pay the next round?

Drinking with a friend, next round payed by who extracts lower valued card Probability that friend is cheating if you pay *losts* consecutive times?

Assumptions:

- P(cheat) = 0.05 and P(honest) = 0.95 (old friend unlikely to cheat)
- P(lose|cheat) = 1 and $P(lose|honest) = 2^{-N}$ (50% probab. each turn)

Bayesian solution:

$$P(cheat|losts) = \frac{P(losts|cheat)P(cheats)}{P(losts|cheat)P(cheat) + P(losts|honest)P(honest)}$$

$$P(cheat|0) = \frac{0.05}{0.05 + 0.95} = 0.05$$

$$P(cheat|5) = \frac{0.05}{0.05 + 2^{-5}0.95} = 0.63$$

Random variables

- Random event: event having more than one possible outcome
 - Each outcome may have associated a probability
 - Outcome not predictable, only probabilities are known
- Different outcomes may take different numerical values: $x_1, x_2, ... \rightarrow$ random variable x $P(x_1), P(x_2), ...$ form a probability distribution
- If observations are **independent** the distribution of each random variable is unaffected by knowledge of any other observation
- At experiment consisting of N repeated observations of the same random variable x can be considered as a single observation of a random vector \mathbf{x} with coponents $x_1, ..., x_n$

Discrete and continuos random variables

- Discrete:
 - "Roll a dice": limited and discrete sample space
 - Discrete probability distribution (one value for each possible outcome)
- Continuos:
 - "Spin a spinner": real number in $[0, 2\pi]$
 - x = an outcome
 - $P(x) = 0 \forall x$
 - $P(x \in [i, j]) > 0$ $P(x \in [0, \pi]) = \frac{1}{2}$ (for the spinner)
 - In general: $P(A < x < B) = \int_{A}^{B} p(x) dx$

Probability density function

Let m be a possible outcome of an observation with possible values $x \in [a, b]$ We define the p.d.f. as:

$$F(x;\theta)dx = P(m \in [x, x + dx])$$

where θ represents one or more parameters for f

•
$$\int_a^b f(x)dx = 1$$
 $\left(\sum_a^b f(x) = 1 \text{ if discrete}\right)$

- x,θ may be vectors
- Usually in physics θ unknown, we want to estimate its value from a set of measurements of x (discussed later)

Cumulative and marginal distribution

Cumulative distribution function

• CDF: $\forall Y \in \mathbb{R}$,

$$F(Y) = P(x \le Y) = \int_{x_{min}}^{Y} f(x) dx$$
• $x \in [x_{min}^{(\neq -\inf)}, x_{max}^{(\neq \inf)}]$

- $\Rightarrow F(x_{min}) = 0, F(x_{max}) = 1$
- F(Y) is monotonic

Marginal density function

 Is the projection of multidimensional density

Ex: given
$$f(x, y)$$
,
$$F_{x}(X) = \int_{y_{min}}^{y_{max}} f(x, y) dy$$

$$F_{y}(Y) = \int_{x_{min}}^{x_{max}} f(x, y) dx$$

Main distribution's properties

Let f(x) be a probability density function.

- Expectation:
 - Expectation of x (expected value, mean value, measure of the distribution's location):

$$E(x) = \mu = \bar{x} = \langle x \rangle = \int x \ f(x) dx$$

• Variance (measure of the distribution's spread):

$$V(x) = \sigma^2 = E[(x - \mu)^2] = E(x^2) - \mu^2 = \int (x - \mu)^2 f(x) dx$$

 \bullet σ is called **standard deviation**

Reminder of most important distributions

Contents

- Statistical investigation
 - Predictions
 - Hypothesis testing
 - Discoveries and certainty

Prediction: Two general classes of problems

- Probabilistic model assumed to be **known**: want to make predictions about future observations
 - Ex: we know the distribution of a random variable x, we wish to predict the average \bar{x} of next n future outcomes
- **2** Probabilistic model **not known**: one or more parameters θ_i unknow
 - Estimate parameters values (parameter estimation)
 - **Decide** if the θ_i s form a set of known constants (hypothesis testing)

Ex: after tossing a coin 1000 times, decide if coin is fair

Ex: after a finite number of observation of a random variable x, estimate its average value \bar{x}

Known model: possible predictions

x random variable with known distribution, predict its value at a future trial.

- **Point prediction**: determine a constant c which minimizes error x c in some sense (future outcome cannod be predicted but only estimated). If error defined as $E_{rr}(x) = (x c)^2$ then c = E(x).
- Interval prediction: determine two constants c_1, c_2 such that

$$P(c_1 < x < c_2) = \gamma = 1 - \delta$$

where γ is an arbitrary constant called **confidence level**

Samuele Carli (*Università digli studi di Firenze* , CERN)

Known model: Interval prediction

$$P(c_1 < x < c_2) = \gamma = 1 - \delta$$

- Bigger γ means prediction $x \in (c_1, c_2)$ reliable but $c_1 c_2$ big.
- Usually γ fixed and c₁, c₂ chosen to minimize distance (symmetric choice not given to be the best one).
- Many methods to determine c₁, c₂ available depending on random variable distribution.

Unknown model: parameter estimation

- Distribution of a random variable x is a known function $f(x, \theta)$
- \bullet θ is an unknown parameter, scalar or vector
- We want to estimate θ after n repetitions of an experiment (x_i outcome of *i*-th experiment, $X = [x_1, ..., x_n]$ is called observation vector)

Point estimate

- Function $\hat{\theta} = g(X)$
- $\hat{\theta}$ is the **point estimator** of θ .
- $\hat{\theta}$ is **unbiased** if $E(\hat{\theta}) = \theta$
- If error limit $\lim \hat{\theta} \theta = 0$ $\bar{\theta}$ is called a **consistent**

Interval estimate

- interval estimator $(\theta_1, \theta_2) = (g_1(X), g_2(X))$
- (θ_1, θ_2) is a γ confidence **interval** of θ if $P(\theta_1 < \theta < \theta_2) = \gamma$
- $g_1(X), g_2(X)$ are to be chosen to minimize $\theta_2 - \theta_1$

Samuele Carli (Università degli studi di Firenze, CERN)

estimator

Contents

- Introduction
- 2 Probability: basic concepts
- Statistical investigation
 - Predictions
 - Hypothesis testing
 - Discoveries and certainty

Hypothesis testing

Statistical Hypothesis

Assertion or conjecture concerning one or more populations.

- Prove with certainty: absolute knowleggle, examine entire population. Not physically possible.
- How to use a random sample as evindence in support or against the hypothesis?

Samuele Carli (Università degli studi di Firenze CERN)

Hypothesis testing...

...is formulated in terms of two hypotheses:

- H_0 : the **null** hypothesis
- H_1 : an alternate hypothesis (the one we want to test)

We reduce the problem to two possible outcomes:

- Reject H_0 and accept H_1 : sample provides sufficient evidence in favor of H_1
- Not reject H_0 : sample does not provide sufficient evidence in favor of H_1

Warning!

Failure to reject H_0 does not imply H_0 true. There just is no sufficient evidence in favor of H_1 to assert it true.

Example jury trial: H_0 (innocent) is rejected if H_1 (guilty) is supported by evidence **beyond reasonable doubt**. Failure to reject H_0 does not imply innocence, just lack of evidence.

Hypothesis testing (example)

- Distribution of a random variable is a function $f(x, \theta)$
- Test $\theta = \theta_0$ (H_0) versus $\theta \neq \theta_0$ (H_1)
- Possible values of θ in H_1 form a set Θ_1
- If $|\Theta_1| = 1$ H_1 is called **simple**, otherwise **composite**
- The null hypothesis H_0 is usually simple.

Basic idea

- Under H_0 , $f(x, \theta)$ is negligible in a certain region D_c of sample space
- If $x \in D_c$, it is reasonable to reject H_0
- If $x \in \bar{D}_c$, it is reasonable not to reject H_0

 D_c is called **critical region** of the test, \bar{D}_c the **region of acceptance**

Samuele Carli (*Università degli studi di Firenze* , CERN)

Hypothesis testing: purpose

• Purpose of hypothesis testing is NOT to determine whether H_0 or H_1 true! ... but to establish whether the evidence supports the rejection of H_0

Example

Establish if a coin is fair (H_0)

- Toss the coin 100 times: head shows up *k* times
- If $k \le 15$, we reject H_0 : evidence shows that coin is not fair
- If $k \ge 40$, we fail to reject H_0 : evidence does not support the rejection of hypothesis that coin is fair
- But this does not mean that the coin is fair, it could be p = 0.48

Case study: RAM chip manufacture

Claim: rate of defective chips is 5%

Let p_d be the true defective probability, we want to test wether:

• H_0 : $p_d = 0.05$

• H_1 : $p_d > 0.05$

based on a sample of 100 chips from the production line

Test statistic

Is a function of the sample $f: S \to \mathbb{R}$.

It is used to reduce the data (multiple data in a multidimensional space) to a number that can be used to perform an hypothesis test.

Generally chosen such that it can quantify behaviours that would distinguish the null hypothesis from the alternative one.

Case study: RAM chip manufacture (1)

Test statistic: X denotes the number of defective pieces in the sample of 100.

This is a Bernoulli process (defectiveness of each chip is independent), in a sample of size S_s we expect $S_s p_d$ (in the example $100 \cdot 0.05 = 5$) defective pieces.

An example of a good test is to reject H_0 if $X \ge 10$, which gives a strong indication that $p_d \ge 0.05$.

Do not reject H_0 critical value

Samuele Carli (*Università degli studi di Firenze* , CERN)

Types of errors

Decision is based on a finite sample: may be wrong!

	H_0 true	H_1 true
Not reject H_0	Correct	Type II error
Reject H ₀	Type I error	Correct

Type I error

Acceptance of H_1 when H_0 is true. The probability α of committing this error is called **significance level** or **size** of the test

Type II error

Failure to reject H_0 where H_1 is true. The probability $1 - \beta$ of **not** committing this error is called **power** of the test (with respect to the alternative H_1)

The objective is to reduce both α and β as much as possible.

Visual interpretation

Visual interpretation: critical region

Visual interpretation: overlap

Case study: RAM chip manufacture (2)

Test statistic: X > 10

Size of the test: probability of type I error: reject \mathcal{H}_0 when true

We assume a binomial distribution: $f(k; n, p) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$

$$\alpha = P(X \ge 10|p_d = 0.05)$$

$$= \sum_{i=10}^{100} P(X = i|p_d = 0.05) = \sum_{i=10}^{100} b(i; n = 100, p = 0.05)$$

$$= \sum_{i=10}^{100} {100 \choose i} 0.05^{i} (1 - 0.05)^{100 - i} = 0.0282$$

Case study: RAM chip manufacture (3)

The power of the test $1-\beta$ (probability of not rejecting H_0 when H_1 true) for $H_1:p_d>0.05$ cannot be computed because the true p_d is unknown. H_1 can be reformulated to be for example $H_1:p_d=0.1$ or $H_2:p_d=0.15$

$$\beta_{H_1} = P(X < 10|p_d = 0.1)$$

$$= \sum_{i=0}^{9} b(i, n = 100, p = 0.1) = 0.4513$$

and

$$\beta_{H_2} = P(X < 10|p_d = 0.15)$$

$$= \sum_{i=0}^{9} b(i, n = 100, p = 0.15) = 0.0551$$

Case study: RAM chip manufacture (4): critical value

A bigger critical region reduces β but enlarges α , and viceversa. What happens by reducing the critical value?

Do not reject H_0 critical value

$$\alpha = \sum_{i=8}^{100} b(i, n = 100, p = 0.05) = 0.128$$
 (was 0.0282)
 $\beta_{H_1} = \sum_{i=0}^{7} b(i, n = 100, p = 0.1) = 0.206$ (was 0.4513)

Case study: RAM chip manufacture (5): sample size

Both α and β can be reduced simultaneously increasing the sample size. For example, increasing the sample size to 150 and setting the critical value to 12 yields:

$$\alpha = \sum_{i=12}^{150} b(i, n = 150, p = 0.05) = 0.074$$
 (was 0.128)
 $\beta_{H_1} = \sum_{i=0}^{7} b(i, n = 150, p = 0.1) = 0.171$ (was 0.206)

Contents

- Introduction
- 2 Probability: basic concepts
- Statistical investigation
 - Predictions
 - Hypothesis testing
 - Discoveries and certainty

Standard deviations

... and here is the Higgs!

... more in details, combined plot

Want to know more?

Q&A session!

For further information call 1-800-scarli-help or:

Samuele Carli

E-mail: scarli@cern.ch

Web: www.csspace.net